lnu.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Automatic Subject Indexing of Text
Linnéuniversitetet, Fakulteten för konst och humaniora (FKH), Institutionen för kulturvetenskaper (KV).ORCID-id: 0000-0003-4169-4777
2019 (engelsk)Inngår i: Knowledge organization, ISSN 0943-7444, Vol. 46, nr 2, s. 104-121Artikkel, forskningsoversikt (Fagfellevurdert) Published
Abstract [en]

Automatic subject indexing addresses problems of scale and sustainability and can be at the same time used to enrich existing metadata records, establish more connections across and between resources from various metadata and resource collections, and enhance consistency of the metadata. In this work, automatic subject indexing focuses on assigning index terms or classes from established knowledge organization systems (KOSs) for subject indexing like thesauri, subject headings systems and classification systems. The following major approaches are discussed, in terms of their similarities and differences, advantages and disadvantages for automatic assigned indexing from KOSs: "text categorization," "document clustering," and "document classification." Text categorization is perhaps the most widespread, machine-learning approach with what seems generally good reported performance. Document clustering automatically both creates groups of related documents and extracts names of subjects depicting the group at hand. Document classification re-uses the intellectual effort invested into creating a KOS for subject indexing and even simple string-matching algorithms have been reported to achieve good results, because one concept can be described using a number of different terms, including equivalent, related, narrower and broader terms. Finally, applicability of automatic subject indexing to operative information systems and challenges of evaluation are outlined, suggesting the need for more research.

sted, utgiver, år, opplag, sider
Nomos Verlagsgesellschaft, 2019. Vol. 46, nr 2, s. 104-121
Emneord [en]
indexing, subject, terms, document, documents, automatic, classification
HSV kategori
Forskningsprogram
Humaniora, Biblioteks- och informationsvetenskap
Identifikatorer
URN: urn:nbn:se:lnu:diva-88845DOI: 10.5771/0943-7444-2019-2-104ISI: 000480655300003OAI: oai:DiVA.org:lnu-88845DiVA, id: diva2:1346908
Tilgjengelig fra: 2019-08-29 Laget: 2019-08-29 Sist oppdatert: 2019-08-29bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Personposter BETA

Golub, Koraljka

Søk i DiVA

Av forfatter/redaktør
Golub, Koraljka
Av organisasjonen
I samme tidsskrift
Knowledge organization

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 18 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf