lnu.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Clinically sufficient classification accuracy and key predictors of treatment failure in a randomized controlled trial of Internet-delivered Cognitive Behavior Therapy for Insomnia
Karolinska Institutet, Sweden;Stockholm County Council, Sweden.
Karolinska Institutet, Sweden;Stockholm County Council, Sweden.
Karolinska Institutet, Sweden;Stockholm County Council, Sweden.
Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för psykologi (PSY). Karolinska Institutet, Sweden;Stockholm County Council, Sweden. (DISA;DISA-IDP)ORCID-id: 0000-0002-6443-5279
2022 (engelsk)Inngår i: Internet Interventions, ISSN 2214-7829, Vol. 29, artikkel-id 100554Artikkel i tidsskrift (Fagfellevurdert) Published
Hållbar utveckling
SDG 3: Säkerställa hälsosamma liv och främja välbefinnande för alla i alla åldrar
Abstract [en]

Background: In Adaptive Treatment Strategies, each patient's outcome is predicted early in treatment, and treatment is adapted for those at risk of failure. It is unclear what minimum accuracy is needed for a classifier to be clinically useful. This study aimed to establish a empirically supported benchmark accuracy for an Adaptive Treatment Strategy and explore the relative value of input predictors. Method: Predictions from 200 patients receiving Internet-delivered cognitive-behavioral therapy in an RCT was analyzed. Correlation and logistic regression was used to explore all included predictors and the predictive capacity of different models. Results: The classifier had a Balanced accuracy of 67 %. Eleven out of the 21 predictors correlated significantly with Failure. A model using all predictors explained 56 % of the outcome variance, and simpler models between 16 and 47 %. Important predictors were patient rated stress, treatment credibility, depression change, and insomnia symptoms at week 3 as well as clinician rated attitudes towards homework and sleep medication. Conclusions: The accuracy (67 %) found in this study sets a minimum benchmark for when prediction accuracy could be clinically useful. Key predictive factors were mainly related to insomnia, depression or treatment involvement. Simpler predictive models showed some promise and should be developed further, possibly using machine learning methods.

sted, utgiver, år, opplag, sider
Elsevier, 2022. Vol. 29, artikkel-id 100554
Emneord [en]
Insomnia, Personalized medicine, Adaptive treatment strategy, Prediction, Internet-delivered Cognitive Behavior Therapy
HSV kategori
Forskningsprogram
Samhällsvetenskap, Psykologi
Identifikatorer
URN: urn:nbn:se:lnu:diva-116365DOI: 10.1016/j.invent.2022.100554ISI: 000841809600006PubMedID: 35799973Scopus ID: 2-s2.0-85132857294OAI: oai:DiVA.org:lnu-116365DiVA, id: diva2:1697079
Tilgjengelig fra: 2022-09-20 Laget: 2022-09-20 Sist oppdatert: 2025-02-20bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstPubMedScopus

Person

Kaldo, Viktor

Søk i DiVA

Av forfatter/redaktør
Kaldo, Viktor
Av organisasjonen
I samme tidsskrift
Internet Interventions

Søk utenfor DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 48 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf