lnu.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Dataset size versus homogeneity: A machine learning study on pooling intervention data in e-mental health dropout predictions
Leuphana University Lüneburg, Germany.ORCID-id: 0000-0001-9876-054X
Karolinska Institutet, Sweden.
Leuphana University Lüneburg, Germany.
Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för psykologi (PSY). Karolinska Institutet, Sweden.ORCID-id: 0000-0002-6443-5279
2024 (engelsk)Inngår i: Digital Health, E-ISSN 2055-2076, Vol. 10Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Objective: This study proposes a way of increasing dataset sizes for machine learning tasks in Internet-based Cognitive Behavioral Therapy through pooling interventions. To this end, it (1) examines similarities in user behavior and symptom data among online interventions for patients with depression, social anxiety, and panic disorder and (2) explores whether these similarities suffice to allow for pooling the data together, resulting in more training data when prediction intervention dropout. Methods: A total of 6418 routine care patients from the Internet Psychiatry in Stockholm are analyzed using (1) clustering and (2) dropout prediction models. For the latter, prediction models trained on each individual intervention's data are compared to those trained on all three interventions pooled into one dataset. To investigate if results vary with dataset size, the prediction is repeated using small and medium dataset sizes. Results: The clustering analysis identified three distinct groups that are almost equally spread across interventions and are instead characterized by different activity levels. In eight out of nine settings investigated, pooling the data improves prediction results compared to models trained on a single intervention dataset. It is further confirmed that models trained on small datasets are more likely to overestimate prediction results. Conclusion: The study reveals similar patterns of patients with depression, social anxiety, and panic disorder regarding online activity and intervention dropout. As such, this work offers pooling different interventions’ data as a possible approach to counter the problem of small dataset sizes in psychological research.

sted, utgiver, år, opplag, sider
Sage Publications, 2024. Vol. 10
Emneord [en]
dropout, e-mental health, ICBT, machine learning, prediction
HSV kategori
Identifikatorer
URN: urn:nbn:se:lnu:diva-138390DOI: 10.1177/20552076241248920ISI: 001223804300001PubMedID: 38757087Scopus ID: 2-s2.0-85193326208OAI: oai:DiVA.org:lnu-138390DiVA, id: diva2:1956735
Tilgjengelig fra: 2025-05-07 Laget: 2025-05-07 Sist oppdatert: 2025-05-30bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstPubMedScopus

Person

Kaldo, Viktor

Søk i DiVA

Av forfatter/redaktør
Zantvoort, KirstenKaldo, Viktor
Av organisasjonen
I samme tidsskrift
Digital Health

Søk utenfor DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 7 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf