lnu.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Nelson-type Limits for α-Stable Lévy Processes
Linnéuniversitetet, Fakultetsnämnden för naturvetenskap och teknik, Institutionen för datavetenskap, fysik och matematik, DFM.
2010 (engelsk)Licentiatavhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Brownian motion has met growing interest in mathematics, physics and particularly in finance since it was introduced in the beginning of the twentieth century. Stochastic processes generalizing Brownian motion have influenced many research fields theoretically and practically. Moreover, along with more refined techniques in measure theory and functional analysis more stochastic processes were constructed and studied. Lévy processes, with Brownian motionas a special case, have been of major interest in the recent decades. In addition, Lévy processes include a number of other important processes as special cases like Poisson processes and subordinators. They are also related to stable processes.

In this thesis we generalize a result by S. Chandrasekhar [2] and Edward Nelson who gave a detailed proof of this result in his book in 1967 [12]. In Nelson’s first result standard Ornstein-Uhlenbeck processes are studied. Physically this describes free particles performing a random and irregular movement in water caused by collisions with the water molecules. In a further step he introduces a nonlinear drift in the position variable, i.e. he studies the case when these particles are exposed to an external field of force in physical terms.

In this report, we aim to generalize the result of Edward Nelson to the case of α-stable Lévy processes. In other words we replace the driving noise of a standard Ornstein-Uhlenbeck process by an α-stable Lévy noise and introduce a scaling parameter uniformly in front of all vector fields in the cotangent space, even in front of the noise. This corresponds to time being sent to infinity. With Chandrasekhar’s and Nelson’s choice of the diffusion constant the stationary state of the velocity process (which is approached as time tends to infinity) is the Boltzmann distribution of statistical mechanics.The scaling limits we obtain in the absence and presence of a nonlinear drift term by using the scaling property of the characteristic functions and time change, can be extended to other types of processes rather than α-stable Lévy processes.

In future, we will consider to generalize this one dimensional result to Euclidean space of arbitrary finite dimension. A challenging task is to consider the geodesic flow on the cotangent bundle of a Riemannian manifold with scaled drift and scaled Lévy noise. Geometrically the Ornstein-Uhlenbeck process is defined on the tangent bundle of the real line and the driving Lévy noise is defined on the cotangent space.

sted, utgiver, år, opplag, sider
Linnéuniversitet , 2010. , s. 50
Emneord [en]
Ornstein-Uhlenbeck position process, α-stable Lévy noise, scaling limits, time change, stochastic Newton equations
HSV kategori
Forskningsprogram
Naturvetenskap, Matematik
Identifikatorer
URN: urn:nbn:se:lnu:diva-7043OAI: oai:DiVA.org:lnu-7043DiVA, id: diva2:337978
Presentation
2010-05-19, Weber, Universitetsplatsen 1, Växjö, 13:15 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2010-08-11 Laget: 2010-08-09 Sist oppdatert: 2010-08-23bibliografisk kontrollert

Open Access i DiVA

fulltekst(826 kB)993 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 826 kBChecksum SHA-512
b4132bf8ff18942d3e07cc4f60bd01f2d8758751073b0b0278b1743c582ed6f486038e379e833bd3298073e55e502b0653c225d7396c22a35d52c3181b461687
Type fulltextMimetype application/pdf

Person

Al-Talibi, Haidar

Søk i DiVA

Av forfatter/redaktør
Al-Talibi, Haidar
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 993 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 549 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf