lnu.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Enhancing Mobile Learning Activities by the Use of Mobile Virtual Devices: Some Design and Implementation Issues
Linnéuniversitetet, Fakultetsnämnden för naturvetenskap och teknik, Institutionen för datavetenskap, fysik och matematik, DFM. (CeLeKT)
Linnéuniversitetet, Fakultetsnämnden för naturvetenskap och teknik, Institutionen för datavetenskap, fysik och matematik, DFM.ORCID-id: 0000-0001-5471-551X
Linnéuniversitetet, Fakultetsnämnden för naturvetenskap och teknik, Institutionen för datavetenskap, fysik och matematik, DFM. (CeLeKT)ORCID-id: 0000-0002-6937-345X
2010 (engelsk)Inngår i: 2010 2nd International Conference on Intelligent Networking and Collaborative Systems (INCOS), IEEE Press, 2010, s. 137-144Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

The use of multiple mobile devices is increasing in mobile learning, bringing a need for collaboration and resource sharing among participating pupils. This paper presents an approach that addresses information and resource sharing for mobile devices in indoors and outdoors settings. Our solution consists of aggregated mobile devices, forming organizations. These Mobile Virtual Devices (MVDs) provide a new mechanism that facilitates design of mobile learning activities offering a virtual complex device that combines the features of several mobile devices.

sted, utgiver, år, opplag, sider
IEEE Press, 2010. s. 137-144
Emneord [en]
mobile organization, shared resources, collaborative learning
HSV kategori
Forskningsprogram
Data- och informationsvetenskap, Datavetenskap
Identifikatorer
URN: urn:nbn:se:lnu:diva-9383DOI: 10.1109/INCOS.2010.85Scopus ID: 2-s2.0-79952080508ISBN: 978-0-7695-4278-2 (tryckt)OAI: oai:DiVA.org:lnu-9383DiVA, id: diva2:371181
Konferanse
2nd International Conference on Intelligent Networking and Collaborative Systems, 24-26 Nov. 2010, Thessaloniki
Tilgjengelig fra: 2010-11-19 Laget: 2010-11-19 Sist oppdatert: 2018-04-26bibliografisk kontrollert
Inngår i avhandling
1. Uncertainties in Mobile Learning applications: Software Architecture Challenges
Åpne denne publikasjonen i ny fane eller vindu >>Uncertainties in Mobile Learning applications: Software Architecture Challenges
2012 (engelsk)Licentiatavhandling, med artikler (Annet vitenskapelig)
Abstract [en]

The presence of computer technologies in our daily life is growing by leaps and bounds. One of the recent trends is the use of mobile technologies and cloud services for supporting everyday tasks and the sharing of information between users. The field of education is not absent from these developments and many organizations are adopting Information and Communication Technologies (ICT) in various ways for supporting teaching and learning. The field of Mobile Learning (M-Learning) offers new opportunities for carrying out collaborative educational activities in a variety of settings and situations. The use of mobile technologies for enhancing collaboration provides new opportunities but at the same time new challenges emerge.

One of those challenges is discussed in this thesis and it con- cerns with uncertainties related to the dynamic aspects that characterized outdoor M-Learning activities. The existence of these uncertainties force software developers to make assumptions in their developments. However, these uncertainties are the cause of risks that may affect the required outcomes for M-Learning activities. Mitigations mechanisms can be developed and included to reduce the risks’ impact during the different phases of development. However, uncertainties which are present at runtime require adaptation mechanisms to mitigate the resulting risks.

This thesis analyzes the current state of the art in self-adaptation in Technology-Enhanced Learning (TEL) and M-Learning. The results of an extensive literature survey in the field and the outcomes of the Geometry Mobile (GEM) research project are reported. A list of uncertainties in collaborative M-Learning activities and the associated risks that threaten the critical QoS outcomes for collaboration are identified and discussed. A detailed elaboration addressing mitigation mechanisms to cope with these problems is elaborated and presented. The results of these efforts provide valuable insights and the basis towards the design of a multi-agent self-adaptive architecture for multiple concerns that is illustrated with a prototype implementation. The proposed conceptual architecture is an initial cornerstone towards the creation of a decentralized distributed self-adaptive system for multiple concerns to guarantee collaboration in M-Learning. 

sted, utgiver, år, opplag, sider
Växjö, Sweden: Linnaeus University, 2012. s. 136
Emneord
distributed systems, uncertainties, self-adaptation, QoS, collaboration, M-Learning, TEL, Mobile Learning, Distributed Systems, Uncertainties, Quality of Service, Self-Adaptation
HSV kategori
Identifikatorer
urn:nbn:se:lnu:diva-18547 (URN)
Presentation
2012-03-12, Homeros, Linnaeus University, Växjö, 10:20 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2012-05-09 Laget: 2012-05-04 Sist oppdatert: 2018-01-12bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Gil de la Iglesia, DidacAndersson, JesperMilrad, Marcelo

Søk i DiVA

Av forfatter/redaktør
Gil de la Iglesia, DidacAndersson, JesperMilrad, Marcelo
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 340 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf