lnu.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Performance of Some Logistic Ridge Regression Estimators
Linnéuniversitetet, Fakultetsnämnden för ekonomi och design, Ekonomihögskolan, ELNU.ORCID-id: 0000-0002-3416-5896
2012 (engelsk)Inngår i: Computational Economics, ISSN 0927-7099, E-ISSN 1572-9974, Vol. 40, nr 4, s. 401-414Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

In this paper we generalize different approaches of estimating the ridge parameter k proposed by Muniz et al. (Comput Stat, 2011) to be applicable for logistic ridge regression (LRR). These new methods of estimating the ridge parameter in LRR are evaluated by means of Monte Carlo simulations along with the some other estimators of k that has already been evaluated by Månsson and Shukur (Commun Stat Theory Methods, 2010) together with the traditional maximum likelihood (ML) approach. As a performance criterion we use the mean squared error (MSE). In the simulation study we also calculate the mean value and the standard deviation of k. The average value is interesting firstly in order to see what values of k that are reasonable and secondly if several estimators have equal variance then the estimator that induces the smallest bias should be chosen. The standard deviation is interesting as a performance criteria if several estimators of k have the same MSE, then the most stable estimator (with the lowest standard deviation) should be chosen. The result from the simulation study shows that LRR outperforms ML approach. Furthermore, some of new proposed ridge estimators outperformed those proposed by Månsson and Shukur (Commun Stat Theory Methods, 2010).

sted, utgiver, år, opplag, sider
2012. Vol. 40, nr 4, s. 401-414
HSV kategori
Forskningsprogram
Statistik
Identifikatorer
URN: urn:nbn:se:lnu:diva-22565DOI: 10.1007/s10614-011-9275-xScopus ID: 2-s2.0-84868539799OAI: oai:DiVA.org:lnu-22565DiVA, id: diva2:571118
Tilgjengelig fra: 2012-11-21 Laget: 2012-11-21 Sist oppdatert: 2020-01-24bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Shukur, Ghazi

Søk i DiVA

Av forfatter/redaktør
Shukur, Ghazi
Av organisasjonen
I samme tidsskrift
Computational Economics

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 61 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf