lnu.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
On Developing Ridge Regression Parameters: A Graphical investigation
Florida International University, USA.
Florida International University, USA.
Jönköping University.
Linnéuniversitetet, Fakultetsnämnden för ekonomi och design, Ekonomihögskolan, ELNU. Jönköping University. (Statistik / LNUC)ORCID-id: 0000-0002-3416-5896
2012 (engelsk)Inngår i: SORT - Statistics and Operations Research Transactions, ISSN 1696-2281, E-ISSN 2013-8830, Vol. 36, nr 2, s. 115-138Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

In this paper we review some existing and propose some new estimators for estimating the ridge parameter. All in all 19 different estimators have been studied. The investigation has been carried out using Monte Carlo simulations. A large number of different models have been investigated where the variance of the random error, the number of variables included in the model, the correlations among the explanatory variables, the sample size and the unknown coefficient vector were varied. For each model we have performed 2000 replications and presented the results both in term of figures and tables. Based on the simulation study, we found that increasing the number of correlated variable, the variance of the random error and increasing the correlation between the independent variables have negative effect on the mean squared error. When the sample size increases the mean squared error decreases even when the correlation between the independent variables and the variance of the random error are large. In all situations, the proposed estimators have smaller mean squared error than the ordinary least squares and other existing estimators.

sted, utgiver, år, opplag, sider
2012. Vol. 36, nr 2, s. 115-138
Emneord [en]
Linear model, LSE, MSE, Monte Carlo simulations, multicollinearity, ridge regression
HSV kategori
Forskningsprogram
Statistik
Identifikatorer
URN: urn:nbn:se:lnu:diva-23173OAI: oai:DiVA.org:lnu-23173DiVA, id: diva2:580487
Tilgjengelig fra: 2012-12-21 Laget: 2012-12-21 Sist oppdatert: 2017-12-06bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Fulltext

Personposter BETA

Shukur, Ghazi

Søk i DiVA

Av forfatter/redaktør
Shukur, Ghazi
Av organisasjonen
I samme tidsskrift
SORT - Statistics and Operations Research Transactions

Søk utenfor DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric

urn-nbn
Totalt: 55 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf