lnu.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Automated subject classification of textual documents in the context of Web-based hierarchical browsing
University of Bath, UK. (Library and Information Science)ORCID-id: 0000-0003-4169-4777
2011 (engelsk)Inngår i: Knowledge organization, ISSN 0943-7444, Vol. 38, nr 3, s. 230-244Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

While automated methods for information organization have been around for several decades now, exponential growth of the World Wide Web has put them into the forefront of research in different communities, within which several approaches can be identified: 1) machine learning (algorithms that allow computers to improve their performance based on learning from pre-existing data); 2) document clustering (algorithms for unsupervised document organization and automated topic extraction); and 3) string matching (algorithms that match given strings within larger text). Here the aim was to automatically organize textual documents into hierarchical structures for subject browsing. The string-matching approach was tested using a controlled vocabulary (containing pre-selected and pre-defined authorized terms, each corresponding to only one concept). The results imply that an appropriate controlled vocabulary, with a sufficient number of entry terms designating classes, could in itself be a solution for automated classification. Then, if the same controlled vocabulary had an appropriate hierarchical structure, it would at the same time provide a good browsing structure for the collection of automatically classified documents.

sted, utgiver, år, opplag, sider
Ergon-Verlag, 2011. Vol. 38, nr 3, s. 230-244
HSV kategori
Forskningsprogram
Humaniora, Biblioteks- och informationsvetenskap
Identifikatorer
URN: urn:nbn:se:lnu:diva-37057Scopus ID: 2-s2.0-79960942208OAI: oai:DiVA.org:lnu-37057DiVA, id: diva2:747709
Tilgjengelig fra: 2014-09-17 Laget: 2014-09-17 Sist oppdatert: 2019-08-29bibliografisk kontrollert

Open Access i DiVA

fulltext(345 kB)220 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 345 kBChecksum SHA-512
c03de82803cf4222ee324cfb615b37e1650adc1d867d00864794f852f7f375df395b196c4749ce450d3a79a9d145f106c5d928adb09590f2d87cdc5b4c4f2a63
Type fulltextMimetype application/pdf

Scopus

Personposter BETA

Golub, Koraljka

Søk i DiVA

Av forfatter/redaktør
Golub, Koraljka
I samme tidsskrift
Knowledge organization

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 220 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 621 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf