lnu.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Towards new computational tools for predicting toxicity
Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för kemi och biomedicin (KOB).ORCID-id: 0000-0003-4158-4148
2016 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

The toxicological screening of the numerous chemicals that we are exposed to requires significant cost and the use of animals. Accordingly, more efficient methods for the evaluation of toxicity are required to reduce cost and the number of animals used. Computational strategies have the potential to reduce both the cost and the use of animal testing in toxicity screening. The ultimate goal of this thesis is to develop computational models for the prediction of toxicological endpoints that can serve as an alternative to animal testing. In Paper I, an attempt was made to construct a global quantitative structure-activity relationship (QSAR)model for the acute toxicity endpoint (LD50 values) using the Munro database that represents a broad chemical landscape. Such a model could be used for acute toxicity screening of chemicals of diverse structures. Paper II focuses on the use of acute toxicity data to support the prediction of chronic toxicity. The results of this study suggest that for related chemicals having acute toxicities within a similar range, their lowest observed effect levels (LOELs) can be used in read-across strategies to fill gaps in chronic toxicity data. In Paper III a k-nearest neighbor (k-NN) classification model was developed to predict human ether-a-go-go related gene (hERG)-derived toxicity. The results suggest that the model has potential for use in identifying compounds with hERG-liabilities, e.g. in drug development.

sted, utgiver, år, opplag, sider
Växjö: Linnaeus University Press, 2016. , s. 68
Serie
Linnaeus University Dissertations ; 243/2016
Emneord [en]
Acute toxicity, chronic toxicity, hERG, k-NN, LD50, LOEL, Munro database, QSAR, read-across, toxicity
HSV kategori
Forskningsprogram
Kemi, Medicinsk kemi
Identifikatorer
URN: urn:nbn:se:lnu:diva-51336Libris ID: 19369783ISBN: 978-91-88357-04-5 (tryckt)OAI: oai:DiVA.org:lnu-51336DiVA, id: diva2:914669
Disputas
2016-04-15, N2007, Norra vägen 49, Kalmar, 09:30 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2016-03-29 Laget: 2016-03-24 Sist oppdatert: 2016-11-22bibliografisk kontrollert

Open Access i DiVA

Swapnil Chavan, Doctoral Thesis (Kappa)(3207 kB)298 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 3207 kBChecksum SHA-512
444729be8bae9b612869c9206796b9e67a419a94485e44ef105dfa3943d4b2e0bf3220abee6a82755a4b431d0b21c3aebe54efad0e5ededc9ae0f9d0b779f810
Type fulltextMimetype application/pdf

Andre lenker

Buy Book (SEK 160 + VAT and postage) lnupress@lnu.se

Personposter BETA

Chavan, Swapnil

Søk i DiVA

Av forfatter/redaktør
Chavan, Swapnil
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 298 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

isbn
urn-nbn

Altmetric

isbn
urn-nbn
Totalt: 563 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf