lnu.sePublikasjoner

RefereraExportera$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt175",{id:"formSmash:upper:j_idt175",widgetVar:"widget_formSmash_upper_j_idt175",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt182_j_idt191",{id:"formSmash:upper:j_idt182:j_idt191",widgetVar:"widget_formSmash_upper_j_idt182_j_idt191",target:"formSmash:upper:j_idt182:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Introducing a symbolic interactionist approach on teaching mathematics: The case of revoicing as an interactional strategy in the teaching of probabilityPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
2017 (engelsk)Inngår i: Journal of Mathematics Teacher Education, ISSN 1386-4416, E-ISSN 1573-1820, Vol. 20, nr 1, s. 31-48Artikkel i tidsskrift (Fagfellevurdert) Published
##### Resurstyp

Text
##### Abstract [en]

##### sted, utgiver, år, opplag, sider

Springer, 2017. Vol. 20, nr 1, s. 31-48
##### Emneord [en]

Interactional teaching strategy, Teaching, Symbolic interactionism, Revoicing, Probability
##### HSV kategori

##### Forskningsprogram

Matematik, Matematikdidaktik
##### Identifikatorer

URN: urn:nbn:se:lnu:diva-51969DOI: 10.1007/s10857-015-9313-zISI: 000397225200003Scopus ID: 2-s2.0-84939247092OAI: oai:DiVA.org:lnu-51969DiVA, id: diva2:917842
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt640",{id:"formSmash:j_idt640",widgetVar:"widget_formSmash_j_idt640",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt648",{id:"formSmash:j_idt648",widgetVar:"widget_formSmash_j_idt648",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt655",{id:"formSmash:j_idt655",widgetVar:"widget_formSmash_j_idt655",multiple:true}); Tilgjengelig fra: 2016-02-11 Laget: 2016-04-08 Sist oppdatert: 2018-04-04bibliografisk kontrollert
##### Inngår i avhandling

This study examines an interactional view on teaching mathematics, whereby meaning is co-produced with the students through a process of negotiation. Further, teaching is viewed from a symbolic interactionism perspective, allowing the analysis to focus on the teacher’s role in the negotiation of meaning. Using methods inspired by grounded theory, patterns of teachers’ interaction are categorized. The results show how teachers’ actions, interpretations and intentions form interactional strategies that guide the negotiation of meaning in the classroom. The theoretical case of revoicing as a teacher action, together with interpretations of mathematical objects from probability theory, is used to exemplify conclusions from the proposed perspective. Data are generated from a lesson sequence with two teachers working with known and unknown constant sample spaces with their classes. In the lessons presented in this article, the focus is on negotiations of the meaning of chance. The analysis revealed how the teachers indicate their interpretations of mathematical objects and intentions to the students to different degrees and, by doing so, create opportunities for the students to ascribe meaning to these objects. The discussion contrasts the findings with possible interpretations from other perspectives on teaching.

1. Contributing to develop contributions: - a metaphor for teaching in the reform mathematics classroom$(function(){PrimeFaces.cw("OverlayPanel","overlay1096948",{id:"formSmash:j_idt1430:0:j_idt1434",widgetVar:"overlay1096948",target:"formSmash:j_idt1430:0:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

doi
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1908",{id:"formSmash:j_idt1908",widgetVar:"widget_formSmash_j_idt1908",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

RefereraExportera$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1961",{id:"formSmash:lower:j_idt1961",widgetVar:"widget_formSmash_lower_j_idt1961",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1962_j_idt1964",{id:"formSmash:lower:j_idt1962:j_idt1964",widgetVar:"widget_formSmash_lower_j_idt1962_j_idt1964",target:"formSmash:lower:j_idt1962:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});