lnu.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Using machine learning to classify news articles
Linnéuniversitetet, Fakulteten för teknik (FTK), Institutionen för datavetenskap (DV).
Linnéuniversitetet, Fakulteten för teknik (FTK), Institutionen för datavetenskap (DV).
2016 (engelsk)Independent thesis Basic level (degree of Bachelor), 10 poäng / 15 hpOppgave
Abstract [en]

In today’s society a large portion of the worlds population get their news on electronicdevices. This opens up the possibility to enhance their reading experience bypersonalizing news for the readers based on their previous preferences. We have conductedan experiment to find out how accurately a Naïve Bayes classifier can selectarticles that a user might find interesting. Our experiments was done on two userswho read and classified 200 articles as interesting or not interesting. Those articleswere divided into four datasets with the sizes 50, 100, 150 and 200. We used a NaïveBayes classifier with 16 different settings configurations to classify the articles intotwo categories. From these experiments we could find several settings configurationsthat showed good results. One settings configuration was chosen as a good generalsetting for this kind of problem. We found that for datasets with a size larger than 50there were no significant increase in classification confidence.

sted, utgiver, år, opplag, sider
2016. , s. 26
Emneord [en]
Machine learning, Naive Bayes, News articles, text classification, WEKA
HSV kategori
Identifikatorer
URN: urn:nbn:se:lnu:diva-59449OAI: oai:DiVA.org:lnu-59449DiVA, id: diva2:1058899
Veileder
Examiner
Tilgjengelig fra: 2016-12-22 Laget: 2016-12-21 Sist oppdatert: 2016-12-22bibliografisk kontrollert

Open Access i DiVA

fulltext(1280 kB)609 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 1280 kBChecksum SHA-512
e369b00b9ce24c6f2a0f68dd78ace2878ca689324f76c55f02564e7fa7dcd01e5af5a4d134eed0ae4e85836eec940eab3525839a918be2dd053eb3097fd51fcd
Type fulltextMimetype application/pdf

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 609 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 1299 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf