lnu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Characterization of 2-ramified power series
Linnéuniversitetet, Fakulteten för teknik (FTK), Institutionen för matematik (MA).ORCID-id: 0000-0002-0510-6782
2017 (Engelska)Ingår i: Journal of Number Theory, ISSN 0022-314X, E-ISSN 1096-1658, Vol. 174, s. 258-273Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

In this paper we study lower ramification numbers of power series tangent to the identity that are defined over fields of positive characteristics p. Let g be such a series, then g has a fixed point at the origin and the corresponding lower ramification numbers of g are then, up to a constant, the degree of the first non-linear term of p-power iterates of g. The result is a complete characterization of power series g having ramification numbers of the form 2 ( 1 + p + 
 + p n ) . Furthermore, in proving said characterization we explicitly compute the first significant terms of g at its pth iterate.

Ort, förlag, år, upplaga, sidor
Elsevier, 2017. Vol. 174, s. 258-273
Nyckelord [en]
Lower ramification numbers, iterations of power series, difference equations, arithmetic dynamics
Nationell ämneskategori
Annan matematik
Forskningsämne
Naturvetenskap, Matematik
Identifikatorer
URN: urn:nbn:se:lnu:diva-58627DOI: 10.1016/j.jnt.2016.10.005ISI: 000392902700016Scopus ID: 2-s2.0-85006507544OAI: oai:DiVA.org:lnu-58627DiVA, id: diva2:1051531
Anmärkning

Correction published in: Nordqvist, Jonas. 2017. Corrigendum to “Characterization of 2-ramified power series” [J. Number Theory 174 (2017) 258–273], Journal of Number Theory, 178: 208.

Tillgänglig från: 2016-12-02 Skapad: 2016-12-02 Senast uppdaterad: 2019-09-06Bibliografiskt granskad
Ingår i avhandling
1. Ramification numbers and periodic points in arithmetic dynamical systems
Öppna denna publikation i ny flik eller fönster >>Ramification numbers and periodic points in arithmetic dynamical systems
2018 (Engelska)Licentiatavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

The field of discrete dynamical systems is a rich and active field of research within mathematics, with applications ranging from biology to computer science, finance, engineering and various others. In this thesis properties of certain discrete dynamical systems are studied together with number theoretic properties of the functions defining these systems. The dynamical systems studied in this thesis are defined by iteration of power series g with a fixed point at the origin, tangent to the identity, and defined over fields of prime characteristic p. We are interested in the geometric location of the periodic points in the open unit disk. Recent results have shown that there is a connection between the lower ramification numbers of g and the geometric location of the periodic points in the open unit disk. The lower ramification numbers of g can be described as the multiplicity of zero as a fixed point of p-power iterates of g.

Part of this thesis concerns characterizing power series having certain sequences of ramification numbers. The other part concerns utilizing these results in order to describe the geometric location of the periodic points in terms of their distance to the origin. More precisely, we characterize all 2-ramified power series, i.e. power series having ramification numbers of the form 2(1 + p + … + pn). Moreover, we also obtain a lower bound of the absolute value of the periodic points in the open unit disk of such series.

Ort, förlag, år, upplaga, sidor
Växjö: Linnaeus University Press, 2018. s. 74
Serie
Lnu Licentiate ; 10
Nyckelord
ramification numbers, local fields, arithmetic dynamics, periodic points, Nottingham group
Nationell ämneskategori
Matematik
Forskningsämne
Naturvetenskap, Matematik
Identifikatorer
urn:nbn:se:lnu:diva-69926 (URN)978-91-88761-28-6 (ISBN)978-91-88761-29-3 (ISBN)
Presentation
2018-02-15, D1136, Växjö, 13:00 (Engelska)
Opponent
Handledare
Tillgänglig från: 2018-01-17 Skapad: 2018-01-17 Senast uppdaterad: 2018-01-17Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopusCorrigendum

Personposter BETA

Nordqvist, Jonas

Sök vidare i DiVA

Av författaren/redaktören
Nordqvist, Jonas
Av organisationen
Institutionen för matematik (MA)
I samma tidskrift
Journal of Number Theory
Annan matematik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 157 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf