lnu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Maintenance process modeling and dynamic estimations based on Bayesian Networks and Association Rules
University of Western Macedonia, Greece.ORCID-id: 0000-0002-9079-2376
University of Western Macedonia, Greece.
2019 (Engelska)Ingår i: Journal of Software: Evolution and Process, ISSN 2047-7473, E-ISSN 2047-7481, Vol. 31, nr 9, artikel-id e2163Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Managing the maintenance process and estimating accurately the effort and duration required for a new release is considered to be a crucial task as it affects successful software project survival and progress over time. In this study, we propose the combination of two well-known machine learning (ML) techniques, Bayesian Networks (BNs), and Association Rules (ARs) for modeling the maintenance process by identifying the relationships among the internal and external quality metrics related to a particular project release to both the maintainability of the project and the maintenance process indicators (i.e., effort and duration). We also exploit Bayesian inference, to test the effect of certain changes in internal and external project factors to the maintainability of a project. We evaluate our approach through a case study on 957 releases of five open source JavaScript applications. The results show that the maintainability of a release, the changes observed between subsequent releases, and the time required between two releases can be accurately predicted from size, complexity, and activity metrics. The proposed combined approach achieves higher accuracy when evaluated against the BN model accuracy.

Ort, förlag, år, upplaga, sidor
John Wiley & Sons, 2019. Vol. 31, nr 9, artikel-id e2163
Nyckelord [en]
software quality, maintenance, maintainability, JavaScript, developers’ activity, source code quality
Nationell ämneskategori
Datavetenskap (datalogi)
Forskningsämne
Data- och informationsvetenskap; Data- och informationsvetenskap, Datavetenskap; Datavetenskap, Programvaruteknik
Identifikatorer
URN: urn:nbn:se:lnu:diva-80640DOI: 10.1002/smr.2163OAI: oai:DiVA.org:lnu-80640DiVA, id: diva2:1289718
Tillgänglig från: 2019-02-18 Skapad: 2019-02-18 Senast uppdaterad: 2019-12-06

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Personposter BETA

Chatzimparmpas, Angelos

Sök vidare i DiVA

Av författaren/redaktören
Chatzimparmpas, Angelos
I samma tidskrift
Journal of Software: Evolution and Process
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 158 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf