lnu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Metal-free ribonucleotide reduction powered by a DOPA radical in Mycoplasma pathogens
Stockholm University.
Stockholm University.
Stockholm University. (Jarone Pinhassi)ORCID-id: 0000-0002-8779-6464
Max Planck Inst Chem Energy Convers, Germany.ORCID-id: 0000-0001-9613-0771
Visa övriga samt affilieringar
2018 (Engelska)Ingår i: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 563, nr 7731, s. 416-420Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Ribonucleotide reductase (RNR) catalyses the only known de novo pathway for the production of all four deoxyribonucleotides that are required for DNA synthesis(1,2). It is essential for all organisms that use DNA as their genetic material and is a current drug target(3,4). Since the discovery that iron is required for function in the aerobic, class I RNR found in all eukaryotes and many bacteria, a dinuclear metal site has been viewed as necessary to generate and stabilize the catalytic radical that is essential for RNR activity(5-7). Here we describe a group of RNR proteins in Mollicutes-including Mycoplasma pathogens-that possess a metal-independent stable radical residing on a modified tyrosyl residue. Structural, biochemical and spectroscopic characterization reveal a stable 3,4-dihydroxyphenylalanine (DOPA) radical species that directly supports ribonucleotide reduction in vitro and in vivo. This observation overturns the presumed requirement for a dinuclear metal site in aerobic ribonucleotide reductase. The metal-independent radical requires new mechanisms for radical generation and stabilization, processes that are targeted by RNR inhibitors. It is possible that this RNR variant provides an advantage under metal starvation induced by the immune system. Organisms that encode this type of RNR-some of which are developing resistance to antibiotics-are involved in diseases of the respiratory, urinary and genital tracts. Further characterization of this RNR family and its mechanism of cofactor generation will provide insight into new enzymatic chemistry and be of value in devising strategies to combat the pathogens that utilize it. We propose that this RNR subclass is denoted class Ie.

Ort, förlag, år, upplaga, sidor
Nature Publishing Group, 2018. Vol. 563, nr 7731, s. 416-420
Nationell ämneskategori
Biokemi och molekylärbiologi
Forskningsämne
Kemi, Biokemi
Identifikatorer
URN: urn:nbn:se:lnu:diva-80724DOI: 10.1038/s41586-018-0653-6ISI: 000450048400063PubMedID: 30429545OAI: oai:DiVA.org:lnu-80724DiVA, id: diva2:1290363
Tillgänglig från: 2019-02-20 Skapad: 2019-02-20 Senast uppdaterad: 2019-02-20Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextPubMed

Personposter BETA

Lundin, Daniel

Sök vidare i DiVA

Av författaren/redaktören
Lundin, DanielKutin, YuriCox, NicholasHögbom, Martin
I samma tidskrift
Nature
Biokemi och molekylärbiologi

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 12 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf