lnu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Sentiment and Stance Visualization of Textual Data for Social Media
Linnéuniversitetet, Fakulteten för teknik (FTK), Institutionen för datavetenskap och medieteknik (DM). (ISOVIS)ORCID-id: 0000-0002-1907-7820
2019 (Engelska)Doktorsavhandling, monografi (Övrigt vetenskapligt)
Abstract [en]

Rapid progress in digital technologies has transformed the world in many ways during the past few decades, in particular, with the new means of communication such as social media. Social media platforms typically rely on textual data produced or shared by the users in multiple timestamped posts. Analyses of such data are challenging for traditional manual methods that are unable to scale up to the volume and the variety of the data. While computational methods can partially address these challenges, they have to be used together with the methods developed within information visualization and visual analytics to gain knowledge from the text data by using interactive visual representations.

One of the most interesting aspects of text data is related to expressions of sentiments and opinions. The corresponding task of sentiment analysis has been studied within computational linguistics, and sentiment visualization techniques exist as well. However, there are gaps in research on the related task of stance analysis, dedicated to subjectivity that is not expressible only in terms of sentiment. Research on stance is an area of interest in linguistics, but support by computational and visual methods has been limited so far. The challenges related to definition, analysis, and visualization of stance in textual data call for an interdisciplinary research effort. The StaViCTA project addressed these challenges with a focus on written text in English. The corresponding results in the area of visualization are reported in this work, based on multiple publications.

The main goal of this dissertation is to define, categorize, and implement means for visual analysis of sentiment and stance in textual data, in particular, for social media. Our work is based on the theoretical framework and automatic classifier of stance developed by our project collaborators, involving multiple non-exclusive stance categories such as certainty and prediction. We define a design space for sentiment and stance visualization techniques based on literature surveys. We discuss multiple visualization and visual analytics approaches developed by us to facilitate the underlying research on stance analysis, data collection and annotation, and visual analysis of sentiment and stance in real-world text data from several social media sources. The work described in this dissertation was carried out in cooperation with domain experts in linguistics and computational linguistics, and our approaches were validated with case studies, expert user reviews, and critical discussion. The results of this work open up further opportunities for research in text visualization and visual text analytics. The potential application areas are academic research, business intelligence, social media monitoring, and journalism.

Ort, förlag, år, upplaga, sidor
Växjö, Sweden: Linnaeus University Press, 2019. , s. 264
Serie
Linnaeus University Dissertations ; 347/2019
Nyckelord [en]
stance visualization, sentiment visualization, text visualization, stance analysis, sentiment analysis, opinion mining, visualization, interaction, visual analytics, NLP, text mining, text analytics, social media
Nationell ämneskategori
Datavetenskap (datalogi) Människa-datorinteraktion (interaktionsdesign)
Forskningsämne
Datavetenskap, Informations- och programvisualisering
Identifikatorer
URN: urn:nbn:se:lnu:diva-81081ISBN: 978-91-88898-47-0 (tryckt)ISBN: 978-91-88898-48-7 (digital)OAI: oai:DiVA.org:lnu-81081DiVA, id: diva2:1296288
Disputation
2019-04-15, Wicksell, Hus K, Växjö, 09:15 (Engelska)
Opponent
Handledare
Projekt
StaViCTA
Forskningsfinansiär
Vetenskapsrådet, 2012-5659Tillgänglig från: 2019-03-19 Skapad: 2019-03-14 Senast uppdaterad: 2019-03-19Bibliografiskt granskad

Open Access i DiVA

kkucher-dissertation-2019(28092 kB)334 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 28092 kBChecksumma SHA-512
e78b174f7f089f0f71c4b989865d762696c7abb0069db7c059c46e1efdb0b8ec6448aa9d040515c84e3bb498b211a85aedd9ef0a02b6ce359864c00b62182498
Typ fulltextMimetyp application/pdf

Personposter BETA

Kucher, Kostiantyn

Sök vidare i DiVA

Av författaren/redaktören
Kucher, Kostiantyn
Av organisationen
Institutionen för datavetenskap och medieteknik (DM)
Datavetenskap (datalogi)Människa-datorinteraktion (interaktionsdesign)

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 334 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

isbn
urn-nbn

Altmetricpoäng

isbn
urn-nbn
Totalt: 735 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf