lnu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
SEMCON: A Semantic and Contextual Objective Metric for Enriching Domain Ontology Concepts
2016 (Engelska)Ingår i: International Journal on Semantic Web and Information Systems (IJSWIS), Vol. 12, nr 2, s. 1-24Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

This paper presents a novel concept enrichment objective metric combining contextual and semantic information of terms extracted from the domain documents. The proposed metric is called SEMCON which stands for semantic and contextual objective metric. It employs a hybrid learning approach utilizing functionalities from statistical and linguistic ontology learning techniques. The metric also introduced for the first time two statistical features that have shown to improve the overall score ranking of highly relevant terms for concept enrichment. Subjective and objective experiments are conducted in various domains. Experimental results (F1) from computer domain show that SEMCON achieved better performance in contrast to tf*idf, and LSA methods, with 12.2%, 21.8%, and 24.5% improvement over them respectively. Additionally, an investigation into how much each of contextual and semantic components contributes to the overall task of concept enrichment is conducted and the obtained results suggest that a balanced weight gives the best performance.

Ort, förlag, år, upplaga, sidor
2016. Vol. 12, nr 2, s. 1-24
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:lnu:diva-89048OAI: oai:DiVA.org:lnu-89048DiVA, id: diva2:1350188
Tillgänglig från: 2019-09-10 Skapad: 2019-09-10 Senast uppdaterad: 2019-09-10

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

https://EconPapers.repec.org/RePEc:igg:jswis0:v:12:y:2016:i:2:p:1-24

Sök vidare i DiVA

Av författaren/redaktören
Kastrati, Zenun
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 8 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf