lnu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Are RESTful APIs well-designed?: Detection of their linguistic (anti)patterns
Université du Québec à Montréal, Canada;Polytechnique de Montréal, Canada.ORCID-id: 0000-0001-7092-2244
Université du Québec à Montréal, Canada.
Université du Québec à Montréal, Canada.
Polytechnique de Montréal, Canada.
Visa övriga samt affilieringar
2015 (Engelska)Ingår i: Service-oriented computing: 13th International Conference, ICSOC 2015, Goa, India, November 16-19, 2015, Proceedings / [ed] Alistair Barros, Daniela Grigori, Nanjangud C. Narendra & Hoa Khanh Dam, Springer, 2015, Vol. 9435, s. 171-187Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Identifier lexicon has a direct impact on software understandability and reusability and, thus, on the quality of the final software product. Understandability and reusability are two important characteristics of software quality. REST (REpresentational State Transfer) style is becoming a de facto standard adopted by many software organisations. The use of proper lexicon in RESTful APIs might make them easier to understand and reuse by client developers, and thus, would ease their adoption. Linguistic antipatterns represent poor practices in the naming, documentation, and choice of identifiers in the APIs as opposed to linguistic patterns that represent best practices. We present the DOLAR approach (Detection Of Linguistic Antipatterns in REST), which applies syntactic and semantic analyses for the detection of linguistic (anti)patterns in RESTful APIs. We provide detailed definitions of ten (anti)patterns and define and apply their detection algorithms on 15 widely-used RESTful APIs, including Facebook, Twitter, and YouTube. The results show that DOLAR can indeed detect linguistic (anti)patterns with high accuracy and that they do occur in major RESTful APIs.

Ort, förlag, år, upplaga, sidor
Springer, 2015. Vol. 9435, s. 171-187
Serie
Lecture Notes in Computer Science, ISSN 0302-9743, E-ISSN 1611-3349 ; 9435
Nyckelord [en]
REST, Patterns, Antipatterns, Detection, Semantic analysis
Nationell ämneskategori
Programvaruteknik
Forskningsämne
Datavetenskap, Programvaruteknik
Identifikatorer
URN: urn:nbn:se:lnu:diva-92186DOI: 10.1007/978-3-662-48616-0_11ISBN: 9783662486160 (digital)ISBN: 9783662486153 (tryckt)OAI: oai:DiVA.org:lnu-92186DiVA, id: diva2:1394159
Konferens
13th International Conference on Service-Oriented Computing, Goa, India, November 16-19, 2015
Tillgänglig från: 2020-02-18 Skapad: 2020-02-18 Senast uppdaterad: 2020-04-01Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Person

Palma, Francis

Sök vidare i DiVA

Av författaren/redaktören
Palma, Francis
Programvaruteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 39 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf