lnu.sePublikationer
Driftstörningar
Just nu har vi driftstörningar på sök-portalerna på grund av hög belastning. Vi arbetar på att lösa problemet, ni kan tillfälligt mötas av ett felmeddelande.
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Summation-by-Parts Approximations of the Second Derivative: Pseudoinverse and Revisitation of a High Order Accurate Operator
Linnéuniversitetet, Fakulteten för teknik (FTK), Institutionen för matematik (MA).ORCID-id: 0000-0003-1216-1672
Umeå University, Sweden;Mälardalen University, Sweden.
2021 (Engelska)Ingår i: SIAM Journal on Numerical Analysis, ISSN 0036-1429, E-ISSN 1095-7170, Vol. 59, nr 5, s. 2669-2697Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

We consider finite difference approximations of the second derivative, exemplified in Poisson's equation, the heat equation, and the wave equation. The finite difference operators satisfy a summation-by-parts (SBP) property, which mimics the integration-by-parts principle. Since the operators approximate the second derivative, they are singular by construction. When imposing boundary conditions weakly, these operators are modified using simultaneous approximation terms. The modification makes the discretization matrix nonsingular for most choices of boundary conditions. Recently, inverses of such matrices were derived. However, for problems with only Neumann boundary conditions, the modified matrices are still singular. For such matrices, we have derived an explicit expression for the Moore-Penrose inverse, which can be used for solving elliptic problems and some time-dependent problems. For this explicit expression to be valid, it is required that the modified matrix does not have more than one zero eigenvalue. This condition holds for the SBP operators with second and fourth order accurate interior stencil. For the sixth order accurate case, we have reconstructed the operator with a free parameter and show that there can be more than one zero eigenvalue. We have performed a detailed analysis on the free parameter to improve the properties of the second derivative SBP operator. We complement the derivations by numerical experiments to demonstrate the improvements.

Ort, förlag, år, upplaga, sidor
SIAM Publications , 2021. Vol. 59, nr 5, s. 2669-2697
Nyckelord [en]
finite difference methods, summation-by-parts, singular operators, pseudoinverses, free parameter
Nationell ämneskategori
Beräkningsmatematik
Forskningsämne
Matematik, Tillämpad matematik
Identifikatorer
URN: urn:nbn:se:lnu:diva-110691DOI: 10.1137/20M1379083ISI: 000752750400012Scopus ID: 2-s2.0-85118297972OAI: oai:DiVA.org:lnu-110691DiVA, id: diva2:1641760
Tillgänglig från: 2022-03-03 Skapad: 2022-03-03 Senast uppdaterad: 2022-03-09Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopusFulltext in ArXiv

Person

Eriksson, Sofia

Sök vidare i DiVA

Av författaren/redaktören
Eriksson, Sofia
Av organisationen
Institutionen för matematik (MA)
I samma tidskrift
SIAM Journal on Numerical Analysis
Beräkningsmatematik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 41 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf