lnu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Clinically sufficient classification accuracy and key predictors of treatment failure in a randomized controlled trial of Internet-delivered Cognitive Behavior Therapy for Insomnia
Karolinska Institutet, Sweden;Stockholm County Council, Sweden.
Karolinska Institutet, Sweden;Stockholm County Council, Sweden.
Karolinska Institutet, Sweden;Stockholm County Council, Sweden.
Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för psykologi (PSY). Karolinska Institutet, Sweden;Stockholm County Council, Sweden. (DISA;DISA-IDP)ORCID-id: 0000-0002-6443-5279
2022 (Engelska)Ingår i: Internet Interventions, ISSN 2214-7829, Vol. 29, artikel-id 100554Artikel i tidskrift (Refereegranskat) Published
Hållbar utveckling
SDG 3: Säkerställa hälsosamma liv och främja välbefinnande för alla i alla åldrar
Abstract [en]

Background: In Adaptive Treatment Strategies, each patient's outcome is predicted early in treatment, and treatment is adapted for those at risk of failure. It is unclear what minimum accuracy is needed for a classifier to be clinically useful. This study aimed to establish a empirically supported benchmark accuracy for an Adaptive Treatment Strategy and explore the relative value of input predictors. Method: Predictions from 200 patients receiving Internet-delivered cognitive-behavioral therapy in an RCT was analyzed. Correlation and logistic regression was used to explore all included predictors and the predictive capacity of different models. Results: The classifier had a Balanced accuracy of 67 %. Eleven out of the 21 predictors correlated significantly with Failure. A model using all predictors explained 56 % of the outcome variance, and simpler models between 16 and 47 %. Important predictors were patient rated stress, treatment credibility, depression change, and insomnia symptoms at week 3 as well as clinician rated attitudes towards homework and sleep medication. Conclusions: The accuracy (67 %) found in this study sets a minimum benchmark for when prediction accuracy could be clinically useful. Key predictive factors were mainly related to insomnia, depression or treatment involvement. Simpler predictive models showed some promise and should be developed further, possibly using machine learning methods.

Ort, förlag, år, upplaga, sidor
Elsevier, 2022. Vol. 29, artikel-id 100554
Nyckelord [en]
Insomnia, Personalized medicine, Adaptive treatment strategy, Prediction, Internet-delivered Cognitive Behavior Therapy
Nationell ämneskategori
Psykologi
Forskningsämne
Samhällsvetenskap, Psykologi
Identifikatorer
URN: urn:nbn:se:lnu:diva-116365DOI: 10.1016/j.invent.2022.100554ISI: 000841809600006PubMedID: 35799973Scopus ID: 2-s2.0-85132857294OAI: oai:DiVA.org:lnu-116365DiVA, id: diva2:1697079
Tillgänglig från: 2022-09-20 Skapad: 2022-09-20 Senast uppdaterad: 2025-02-20Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextPubMedScopus

Person

Kaldo, Viktor

Sök vidare i DiVA

Av författaren/redaktören
Kaldo, Viktor
Av organisationen
Institutionen för psykologi (PSY)
I samma tidskrift
Internet Interventions
Psykologi

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 48 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf