lnu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Intelligent detection of warning bells at level crossings through deep transfer learning for smarter railway maintenance
Univ Naples Federico II, Italy.
Univ Naples Federico II, Italy.
Linnéuniversitetet, Fakulteten för teknik (FTK), Institutionen för datavetenskap och medieteknik (DM). Mälardalen University, Sweden.ORCID-id: 0000-0002-2833-7196
Univ Naples Federico II, Italy.
Visa övriga samt affilieringar
2023 (Engelska)Ingår i: Engineering applications of artificial intelligence, ISSN 0952-1976, E-ISSN 1873-6769, Vol. 123, artikel-id 106405Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Level Crossings are among the most critical railway assets, concerning both the risk of accidents and their maintainability, due to intersections with promiscuous traffic and difficulties in remotely monitoring their health status. Failures can be originated from several factors, including malfunctions in the bar mechanisms and warning devices, such as light signals and bells. This paper focuses on the intelligent detection of anomalies in warning bells through non-intrusive acoustic monitoring by: (1) introducing a new concept for autonomous monitoring of level crossings; (2) generating and sharing a specific dataset collecting relevant audio signals from publicly available audio recordings; (3) implementing and evaluating a solution combining deep learning and transfer learning for warning bell detection. The results show a high accuracy in detecting anomalies and suggest viability of the approach in real-world applications, especially where network cameras with on-board microphones are installed for multi-purpose level crossing surveillance.

Ort, förlag, år, upplaga, sidor
Elsevier, 2023. Vol. 123, artikel-id 106405
Nyckelord [en]
Audio analytics, Artificial intelligence, Machine learning, Anomaly detection, Predictive maintenance, Railway safety
Nationell ämneskategori
Systemvetenskap, informationssystem och informatik Transportteknik och logistik
Forskningsämne
Data- och informationsvetenskap, Informatik
Identifikatorer
URN: urn:nbn:se:lnu:diva-123539DOI: 10.1016/j.engappai.2023.106405ISI: 001013279100001Scopus ID: 2-s2.0-85160199789OAI: oai:DiVA.org:lnu-123539DiVA, id: diva2:1786666
Tillgänglig från: 2023-08-09 Skapad: 2023-08-09 Senast uppdaterad: 2023-08-24Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Flammini, Francesco

Sök vidare i DiVA

Av författaren/redaktören
Flammini, Francesco
Av organisationen
Institutionen för datavetenskap och medieteknik (DM)
I samma tidskrift
Engineering applications of artificial intelligence
Systemvetenskap, informationssystem och informatikTransportteknik och logistik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 64 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf