lnu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
The promise and challenges of computer mouse trajectories in DMHIs - A feasibility study on pre-treatment dropout predictions
Leuphana University Luneburg, Germany;Karolinska Institutet, Sweden;Reg Stockholm, Sweden.
Leuphana University Luneburg, Germany;Karolinska Institutet, Sweden;Reg Stockholm, Sweden.
Karolinska Institutet, Sweden;Region Stockholm, Sweden.
Karolinska Institutet, Sweden;Region Stockholm, Sweden;Umeå University, Sweden.
Visa övriga samt affilieringar
2025 (Engelska)Ingår i: Internet Interventions, ISSN 2214-7829, Vol. 40, artikel-id 100828Artikel i tidskrift (Refereegranskat) Published
Hållbar utveckling
SDG 3: Säkerställa hälsosamma liv och främja välbefinnande för alla i alla åldrar
Abstract [en]

With the impetus of Digital Mental Health Interventions (DMHIs), complex data can be leveraged to improve and personalize mental health care. However, most approaches rely on a very limited number of often costly features. Computer mouse trajectories can be unobtrusively and cost-efficiently gathered and seamlessly integrated into current baseline processes. Empirical evidence suggests that mouse movements hold information on user motivation and attention, both valuable aspects otherwise difficult to measure at scale. Further, mouse trajectories can already be collected on pre-treatment questionnaires, making them a promising candidate for early predictions informing treatment allocation. Therefore, this paper discusses how to collect and process mouse trajectory data on questionnaires in DMHIs. Covering different complexity levels, we combine hand-crafted features with non-sequential machine learning models, as well as spatiotemporal raw mouse data with stateof-the-art sequential neural networks. The data processing pipeline for the latter includes task-specific preprocessing to convert the variable length trajectories into a single prediction per user. As a feasibility study, we collected mouse trajectory data from 183 patients filling out a pre-intervention depression questionnaire. While the hand-crafted features slightly improve baseline predictions, the spatiotemporal models underperform. However, considering our small data set size, we propose more research to investigate the potential value of this novel and promising data type and provide the necessary steps and open-source code to do so.

Ort, förlag, år, upplaga, sidor
Elsevier BV , 2025. Vol. 40, artikel-id 100828
Nyckelord [en]
cognitive-behavior therapy, depression, health, scale
Nationell ämneskategori
Tillämpad psykologi Data- och informationsvetenskap
Forskningsämne
Samhällsvetenskap, Psykologi; Data- och informationsvetenskap
Identifikatorer
URN: urn:nbn:se:lnu:diva-138209DOI: 10.1016/j.invent.2025.100828ISI: 001469824100001Scopus ID: 2-s2.0-105002214015OAI: oai:DiVA.org:lnu-138209DiVA, id: diva2:1955264
Tillgänglig från: 2025-04-29 Skapad: 2025-04-29 Senast uppdaterad: 2025-07-02Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Kaldo, Viktor

Sök vidare i DiVA

Av författaren/redaktören
Kaldo, Viktor
Av organisationen
Institutionen för psykologi (PSY)
I samma tidskrift
Internet Interventions
Tillämpad psykologiData- och informationsvetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 13 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf