lnu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Low temperature, autotrophic microbial denitrification using thiosulfate or thiocyanate as electron donor
Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science. (Ctr Ecol & Evolut Microbial Model Syst EEMiS)ORCID iD: 0000-0001-9005-5168
Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science. (Ctr Ecol & Evolut Microbial Model Syst EEMiS)
Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science. University of Copenhagen, Denmark. (Ctr Ecol & Evolut Microbial Model Syst EEMiS)
Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science. (Ctr Ecol & Evolut Microbial Model Syst EEMiS)ORCID iD: 0000-0003-0021-2452
Show others and affiliations
2017 (English)In: Biodegradation, ISSN 0923-9820, E-ISSN 1572-9729, Vol. 28, no 4, p. 287-301Article in journal (Refereed) Published
Abstract [en]

Wastewaters generated during mining and processing of metal sulfide ores are often acidic (pH < 3) and can contain significant concentrations of nitrate, nitrite, and ammonium from nitrogen based explosives. In addition, wastewaters from sulfide ore treatment plants and tailings ponds typically contain large amounts of inorganic sulfur compounds, such as thiosulfate and tetrathionate. Release of these wastewaters can lead to environmental acidification as well as an increase in nutrients (eutrophication) and compounds that are potentially toxic to humans and animals. Waters from cyanidation plants for gold extraction will often conjointly include toxic, sulfur containing thiocyanate. More stringent regulatory limits on the release of mining wastes containing compounds such as inorganic sulfur compounds, nitrate, and thiocyanate, along the need to increase production from sulfide mineral mining calls for low cost techniques to remove these pollutants under ambient temperatures (approximately 8 °C). In this study, we used both aerobic and anaerobic continuous cultures to successfully couple inorganic sulfur compound (i.e. thiosulfate and thiocyanate) oxidation for the removal of nitrogenous compounds under neutral to acidic pH at the low temperatures typical for boreal climates. Furthermore, the development of the respective microbial communities was identified over time by DNA sequencing, and found to contain a consortium including populations aligning within Flavobacterium, Thiobacillus, and Comamonadaceae lineages. This is the first study to remediate mining waste waters by coupling autotrophic thiocyanate oxidation to nitrate reduction at low temperatures and acidic pH by means of an identified microbial community.

Place, publisher, year, edition, pages
Springer, 2017. Vol. 28, no 4, p. 287-301
National Category
Microbiology
Research subject
Ecology, Microbiology
Identifiers
URN: urn:nbn:se:lnu:diva-64704DOI: 10.1007/s10532-017-9796-7ISI: 000405010300005Scopus ID: 2-s2.0-85020074337OAI: oai:DiVA.org:lnu-64704DiVA, id: diva2:1105092
Available from: 2017-06-02 Created: 2017-06-02 Last updated: 2019-08-29Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Broman, EliasWu, XiaofenChristel, StephanNi, GaofengLopez-Fernandez, MargaritaDopson, Mark

Search in DiVA

By author/editor
Broman, EliasWu, XiaofenChristel, StephanNi, GaofengLopez-Fernandez, MargaritaDopson, Mark
By organisation
Department of Biology and Environmental Science
In the same journal
Biodegradation
Microbiology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 223 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf