lnu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Sentiment Analysis With Convolutional Neural Networks: Classifying sentiment in Swedish reviews
Linnéuniversitetet, Fakulteten för teknik (FTK), Institutionen för datavetenskap (DV).
2017 (Engelska)Självständigt arbete på grundnivå (kandidatexamen), 10 poäng / 15 hpStudentuppsats (Examensarbete)
Abstract [en]

Today many companies exist and market their products and services on social medias, and therefore may receive reviews and thoughts from their end-users directly in these social medias. Reading every text by hand can be time-consuming, so by analysing the sentiment for all texts give the companies an overview how positive or negative the users are on a specific subject. Sentiment analysis is a feature that Beanloop AB is interested in implementing in their future projects and this thesis research problem was to investigate how deep learning could be used for this task. It was done by conducting an experiment with deep learning and neural networks. Several convolutional neural network models were implemented with different settings to find a combination of settings that gave the highest accuracy on the given test dataset. There were two different kind of models, one kind classifying positive and negative, and the second classified the previous two categories but also neutral. The training dataset and the test dataset contained data from two recommendation sites, www.reco.se and se.trustpilot.com. The final result shows that when classifying three categories (positive, negative and neutral) the models had problems to reach an accuracy at 85%, were only one model reached 80% accuracy as best on the test dataset. However, when only classifying two categories (positive and negative) the models showed very good results and reached almost 95% accuracy for every model.

Ort, förlag, år, upplaga, sidor
2017. , s. 51
Nyckelord [en]
Sentiment analysis, Deep learning, Convolutional neural network, Machine learning, User reviews, Swedish reviews
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:lnu:diva-64768OAI: oai:DiVA.org:lnu-64768DiVA, id: diva2:1105494
Externt samarbete
Beanloop AB
Ämne / kurs
Datavetenskap
Utbildningsprogram
Utvecklare av digitala tjänster, 180 hp
Handledare
Examinatorer
Tillgänglig från: 2017-06-05 Skapad: 2017-06-04 Senast uppdaterad: 2018-01-13Bibliografiskt granskad

Open Access i DiVA

Deep learning thesis(2545 kB)2378 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 2545 kBChecksumma SHA-512
a1997da9926c4e6258bf228f3410d435f5508e3d21ece5891434e8a39c0b8b7cb49ff7d793c71ede49138b46b754c75bb6939908c2cae481c8e74a3255bf62b8
Typ fulltextMimetyp application/pdf

Av organisationen
Institutionen för datavetenskap (DV)
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 2378 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 1079 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf