lnu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Using meta-heuristics and machine learning for software optimization of parallel computing systems: a systematic literature review
Linnaeus University, Faculty of Technology, Department of computer science and media technology (CM). (Parallel Computing)
Linnaeus University, Faculty of Technology, Department of computer science and media technology (CM). (Parallel Computing)
IBM Research, Brazil.
Cracow University of Technology, Poland.
Show others and affiliations
2019 (English)In: Computing, ISSN 0010-485X, E-ISSN 1436-5057, Vol. 101, no 8, p. 893-936Article in journal (Refereed) Published
Abstract [en]

While modern parallel computing systems offer high performance, utilizing these powerful computing resources to the highest possible extent demands advanced knowledge of various hardware architectures and parallel programming models. Furthermore, optimized software execution on parallel computing systems demands consideration of many parameters at compile-time and run-time. Determining the optimal set of parameters in a given execution context is a complex task, and therefore to address this issue researchers have proposed different approaches that use heuristic search or machine learning. In this paper, we undertake a systematic literature review to aggregate, analyze and classify the existing software optimization methods for parallel computing systems. We review approaches that use machine learning or meta-heuristics for software optimization at compile-time and run-time. Additionally, we discuss challenges and future research directions. The results of this study may help to better understand the state-of-the-art techniques that use machine learning and meta-heuristics to deal with the complexity of software optimization for parallel computing systems. Furthermore, it may aid in understanding the limitations of existing approaches and identification of areas for improvement.

Place, publisher, year, edition, pages
Springer, 2019. Vol. 101, no 8, p. 893-936
Keywords [en]
Parallel computing, Machine learning, Meta-heuristics, Software optimization
National Category
Computer Sciences
Research subject
Computer and Information Sciences Computer Science, Computer Science
Identifiers
URN: urn:nbn:se:lnu:diva-73712DOI: 10.1007/s00607-018-0614-9ISI: 000472515600001Scopus ID: 2-s2.0-85045892455OAI: oai:DiVA.org:lnu-73712DiVA, id: diva2:1201942
Available from: 2018-04-27 Created: 2018-04-27 Last updated: 2019-08-29Bibliographically approved
In thesis
1. Programming and Optimization of Big-Data Applications on Heterogeneous Computing Systems
Open this publication in new window or tab >>Programming and Optimization of Big-Data Applications on Heterogeneous Computing Systems
2018 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The next-generation sequencing instruments enable biological researchers to generate voluminous amounts of data. In the near future, it is projected that genomics will be the largest source of big-data. A major challenge of big data is the efficient analysis of very large data-sets. Modern heterogeneous parallel computing systems, which comprise multiple CPUs, GPUs, and Intel Xeon Phis, can cope with the requirements of big-data analysis applications. However, utilizing these resources to their highest possible extent demands advanced knowledge of various hardware architectures and programming frameworks. Furthermore, optimized software execution on such systems demands consideration of many compile-time and run-time system parameters.

In this thesis, we study and develop parallel pattern matching algorithms for heterogeneous computing systems. We apply our pattern matching algorithm for DNA sequence analysis. Experimental evaluation results show that our parallel algorithm can achieve more than 50x speedup when executed on host CPUs and more than 30x when executed on Intel Xeon Phi compared to the sequential version executed on the CPU.

Thereafter, we combine machine learning and search-based meta-heuristics to determine near-optimal parameter configurations of parallel matching algorithms for efficient execution on heterogeneous computing systems. We use our approach to distribute the workload of the DNA sequence analysis application across the available host CPUs and accelerating devices and to determine the system configuration parameters of a heterogeneous system that comprise Intel Xeon CPUs and Xeon Phi accelerator. Experimental results show that the execution that uses the resources of both host CPUs and accelerating device outperforms the host-only and the device-only executions.

Furthermore, we propose programming abstractions, a source-to-source compiler, and a run-time system for heterogeneous stream computing. Given a source code annotated with compiler directives, the source-to-source compiler can generate device-specific code. The run-time system can automatically distribute the workload across the available host CPUs and accelerating devices. Experimental results show that our solution significantly reduces the programming effort and the generated code delivers better performance than the CPUs-only or GPUs-only executions.

Place, publisher, year, edition, pages
Växjö: Linnaeus University Press, 2018
Series
Linnaeus University Dissertations ; 335/2018
Keywords
Big Data, Heterogeneous Parallel Computing, Software Optimization, Source-to-source Compilation
National Category
Computer Sciences
Research subject
Computer and Information Sciences Computer Science; Computer and Information Sciences Computer Science, Computer Science
Identifiers
urn:nbn:se:lnu:diva-79192 (URN)978-91-88898-14-2 (ISBN)978-91-88898-15-9 (ISBN)
Public defence
2018-12-20, D1136, Hus D, Växjö, 15:00 (English)
Opponent
Supervisors
Available from: 2018-12-17 Created: 2018-12-13 Last updated: 2018-12-17Bibliographically approved

Open Access in DiVA

fulltext(3181 kB)227 downloads
File information
File name FULLTEXT01.pdfFile size 3181 kBChecksum SHA-512
f644e7b6a33f34eb6ce5823b261f266a9f80f882f44f8055b8e9ee40ee39b53d3dd120f7a651dedffd2827943c2ed41560a7895bae58c6a1cc744297bd3e8086
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Authority records BETA

Memeti, SuejbPllana, Sabri

Search in DiVA

By author/editor
Memeti, SuejbPllana, Sabri
By organisation
Department of computer science and media technology (CM)
In the same journal
Computing
Computer Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 227 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 281 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf