lnu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A systematic approach for performance assessment using process mining: An industrial experience report
University of Zaragoza, Spain.
Prodevelop SL, Spain.
Universitat Oberta de Catalunya, Spain.
Prodevelop SL, Spain.
Visa övriga samt affilieringar
2018 (Engelska)Ingår i: Journal of Empirical Software Engineering, ISSN 1382-3256, E-ISSN 1573-7616, Vol. 23, nr 6, s. 3394-3441Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Software performance engineering is a mature field that offers methods to assess system performance. Process mining is a promising research field applied to gain insight on system processes. The interplay of these two fields opens promising applications in the industry. In this work, we report our experience applying a methodology, based on process mining techniques, for the performance assessment of a commercial data-intensive software application. The methodology has successfully assessed the scalability of future versions of this system. Moreover, it has identified bottlenecks components and replication needs for fulfilling business rules. The system, an integrated port operations management system, has been developed by Prodevelop, a medium-sized software enterprise with high expertise in geospatial technologies. The performance assessment has been carried out by a team composed by practitioners and researchers. Finally, the paper offers a deep discussion on the lessons learned during the experience, that will be useful for practitioners to adopt the methodology and for researcher to find new routes.

Ort, förlag, år, upplaga, sidor
Springer, 2018. Vol. 23, nr 6, s. 3394-3441
Nyckelord [en]
Software performance, Process mining, Unified modeling language, Complex event processing, Stochastic petri net
Nationell ämneskategori
Datavetenskap (datalogi)
Forskningsämne
Datavetenskap, Programvaruteknik
Identifikatorer
URN: urn:nbn:se:lnu:diva-74460DOI: 10.1007/s10664-018-9606-9ISI: 000451593200009Scopus ID: 2-s2.0-85044196222OAI: oai:DiVA.org:lnu-74460DiVA, id: diva2:1209237
Projekt
H2020 DICE, Grant Agreement No. 644869CyCriSec-TIN2014-58457-R
Forskningsfinansiär
EU, Horisont 2020, 644869Tillgänglig från: 2018-05-22 Skapad: 2018-05-22 Senast uppdaterad: 2019-08-29Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Perez-Palacin, Diego

Sök vidare i DiVA

Av författaren/redaktören
Perez-Palacin, Diego
Av organisationen
Institutionen för datavetenskap och medieteknik (DM)
I samma tidskrift
Journal of Empirical Software Engineering
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 171 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf