lnu.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Visualization of Quantified Self data from Spotify using avatars
Linnéuniversitetet, Fakulteten för teknik (FTK), Institutionen för datavetenskap och medieteknik (DM).
2018 (engelsk)Independent thesis Advanced level (degree of Master (Two Years)), 20 poäng / 30 hpOppgave
Abstract [en]

The increased interest for self-tracking through the use of technology has given birth to the Quantified Self movement. The movement empowers users to gain self-knowledge from their own data. The overall idea is fairly recent and as such it provides a vast space for exploration and research. This project contributes to the Quantified self movement by proposing a concept for visualization of personal data using an avatar. The overall work finds inspiration in Chernoff faces visualization and it uses parts of the presentation method within the project design.  

This thesis presents a visualization approach for Quantified Self data using avatars. It tests the proposed concept through a user study with two iterations. The manuscript holds a detailed overview of the designing process, questionnaire for the data mapping, implementation of the avatars, two user studies and the analysis of the results. The avatars are evaluated using Spotify data. The implementation offers a visualization library that can be reused outside of the scope of this thesis.

The project managed to deliver an avatar that presents personal data through the use of facial expressions. The results show that the users can understand the proposed mapping of data. Some of the users were not able to gain meaningful insights from the overall use of the avatar, but the study gives directions for further improvements of the concept. 

sted, utgiver, år, opplag, sider
2018. , s. 109
Emneord [en]
Quantified Self, Chernoff faces, avatars, data visualization, Spotify
HSV kategori
Identifikatorer
URN: urn:nbn:se:lnu:diva-78293OAI: oai:DiVA.org:lnu-78293DiVA, id: diva2:1255440
Fag / kurs
Media Technology
Utdanningsprogram
Social Media and Web Technologies, Master Programme, 120 credits
Presentation
2018-08-30, D2270, Linnaeus Universtity, Vaxjo, 12:00 (engelsk)
Veileder
Examiner
Prosjekter
Visualizing quantified self data using avatarsTilgjengelig fra: 2018-10-15 Laget: 2018-10-12 Sist oppdatert: 2018-10-15bibliografisk kontrollert

Open Access i DiVA

fulltext(4405 kB)189 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 4405 kBChecksum SHA-512
1e2a21b65d2a5560c6a590f8a1375a21585144fafec929a7aaa8ff67d9a5c36e17c36b709cd0ed95ff2d9c70b40f20db3ecea508a0749cfad2708b7f2dfd5bb8
Type fulltextMimetype application/pdf

Søk i DiVA

Av forfatter/redaktør
Aleksikj, Stefan
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 189 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 863 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf