lnu.sePublications

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt144",{id:"formSmash:upper:j_idt144",widgetVar:"widget_formSmash_upper_j_idt144",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt145_j_idt147",{id:"formSmash:upper:j_idt145:j_idt147",widgetVar:"widget_formSmash_upper_j_idt145_j_idt147",target:"formSmash:upper:j_idt145:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Passive Approximation and Optimization Using B-SplinesPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true}); PrimeFaces.cw("SelectBooleanButton","widget_formSmash_j_idt221",{id:"formSmash:j_idt221",widgetVar:"widget_formSmash_j_idt221",onLabel:"Hide others and affiliations",offLabel:"Show others and affiliations"});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
2019 (English)In: SIAM Journal on Applied Mathematics, ISSN 0036-1399, E-ISSN 1095-712X, Vol. 79, no 1, p. 436-458Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

2019. Vol. 79, no 1, p. 436-458
##### Keywords [en]

approximation, Herglotz functions, B-splines, passive systems, convex optimization, sum rules
##### National Category

Mathematics
##### Research subject

Mathematics, Applied Mathematics
##### Identifiers

URN: urn:nbn:se:lnu:diva-81228DOI: 10.1137/17M1161026ISI: 000460127100021Scopus ID: 2-s2.0-85063407473OAI: oai:DiVA.org:lnu-81228DiVA, id: diva2:1298160
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt434",{id:"formSmash:j_idt434",widgetVar:"widget_formSmash_j_idt434",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt440",{id:"formSmash:j_idt440",widgetVar:"widget_formSmash_j_idt440",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt446",{id:"formSmash:j_idt446",widgetVar:"widget_formSmash_j_idt446",multiple:true}); Available from: 2019-03-22 Created: 2019-03-22 Last updated: 2019-11-21Bibliographically approved
##### In thesis

A passive approximation problem is formulated where the target function is an arbitrary complex-valued continuous function defined on an approximation domain consisting of a finite union of closed and bounded intervals on the real axis. The norm used is a weighted L-p-norm where 1 <= p <= infinity. The approximating functions are Herglotz functions generated by a measure with Holder continuous density in an arbitrary neighborhood of the approximation domain. Hence, the imaginary and the real parts of the approximating functions are Holder continuous functions given by the density of the measure and its Hilbert transform, respectively. In practice, it is useful to employ finite B-spline expansions to represent the generating measure. The corresponding approximation problem can then be posed as a finite-dimensional convex optimization problem which is amenable for numerical solution. A constructive proof is given here showing that the convex cone of approximating functions generated by finite uniform B-spline expansions of fixed arbitrary order (linear, quadratic, cubic, etc.) is dense in the convex cone of Herglotz functions which are locally Holder continuous in a neighborhood of the approximation domain, as mentioned above. As an illustration, typical physical application examples are included regarding the passive approximation and optimization of a linear system having metamaterial characteristics, as well as passive realization of optimal absorption of a dielectric small sphere over a finite bandwidth.

1. Optimization and Physical Bounds for Passive and Non-passive Systems$(function(){PrimeFaces.cw("OverlayPanel","overlay1372058",{id:"formSmash:j_idt720:0:j_idt724",widgetVar:"overlay1372058",target:"formSmash:j_idt720:0:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

doi
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1156",{id:"formSmash:j_idt1156",widgetVar:"widget_formSmash_j_idt1156",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1209",{id:"formSmash:lower:j_idt1209",widgetVar:"widget_formSmash_lower_j_idt1209",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1210_j_idt1212",{id:"formSmash:lower:j_idt1210:j_idt1212",widgetVar:"widget_formSmash_lower_j_idt1210_j_idt1212",target:"formSmash:lower:j_idt1210:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});