lnu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Effect of wood density and cracks on the moisture content of coated Norway spruce (Picea abies (L.) Karst.)
Linnaeus University, Faculty of Technology, Department of Forestry and Wood Technology.ORCID iD: 0000-0002-4760-3787
Lund university, Sweden.
Linnaeus University, Faculty of Technology, Department of Forestry and Wood Technology.
2019 (English)In: Wood and Fiber Science, ISSN 0735-6161, Vol. 51, no 2, p. 160-172Article in journal (Refereed) Published
Abstract [en]

A protective coating is often used on the cladding of wooden facades to limit the absorption of moisture. Low wood moisture content (MC) is essential to obtain satisfactory durability performance. Wood density is known to influence the water sorption and crack formation of uncoated wood. However, the effect of density on the aforementioned behaviors of coated spruce is not yet fully understood. Six-years of data on the crack formation and the MC variation of outdoor exposed panels are analyzed in this article. The outdoor test was complemented by a subsequent laboratory experiment, wherein the MC variation was monitored at different depths on the board during artificial water spraying. The aim of this research was to increase the knowledge about how wood density and aging affect the water sorption of coated spruce through the crack formation. The results indicated that wood density had an impact on the overall sorption behavior of coated spruce. Low-density spruce contributed to faster water absorption and desorption processes than coated samples with higher density. However, the observed correlation to density was limited to a condition with an intact coating. High-density characteristics contributed to more crack formation, and the density–sorption relationship reversed with a cracked coating. A cracked coating caused a strong local increase in the MC of the wood at the location of the cracks. Weather-exposed replicates without cracks had a higher MC in the core of the board compared with the value beneath the coating. The higher MC is probably due to the water sorption of the uncoated backside of the panel. Such an occurrence raised awareness for future studies to account for multidimensional sorption behavior from all sides of the panel. The local difference in MC also raises awareness for future studies to investigate local MC variations (as opposed to the global average of the panel) in research on the durability of coated wood.

Place, publisher, year, edition, pages
Society of Wood Science and Technology, USA , 2019. Vol. 51, no 2, p. 160-172
National Category
Wood Science Other Materials Engineering
Research subject
Technology (byts ev till Engineering), Forestry and Wood Technology
Identifiers
URN: urn:nbn:se:lnu:diva-81577DOI: 10.22382/wfs-2019-017OAI: oai:DiVA.org:lnu-81577DiVA, id: diva2:1301522
Available from: 2019-04-02 Created: 2019-04-02 Last updated: 2019-08-28Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records BETA

Sjökvist, TinhBlom, Åsa

Search in DiVA

By author/editor
Sjökvist, TinhBlom, Åsa
By organisation
Department of Forestry and Wood Technology
In the same journal
Wood and Fiber Science
Wood ScienceOther Materials Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 36 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf