lnu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Cost-optimized energy-efficient building envelope measures for a multi-storey residential building in a cold climate
Linnaeus University, Faculty of Technology, Department of Building Technology.
Linnaeus University, Faculty of Technology, Department of Built Environment and Energy Technology.
Linnaeus University, Faculty of Technology, Department of Built Environment and Energy Technology. (SBER)
2019 (English)In: Innovative Solutions for Energy Transitions: Proceedings of the 10th International Conference on Applied Energy (ICAE2018) / [ed] Yan, J; Yang, HX; Li, H; Chen, X, Elsevier, 2019, Vol. 158, p. 3760-3767Conference paper, Published paper (Refereed)
Abstract [en]

In this study we analyse cost-optimal building envelope measures including insulation for attic roof, ground floor and exterior walls, and efficient windows and doors for new buildings. The analysis is based on a multi-storey building in south of Sweden with an expected lifetime of at least 100 years. We integrate dynamic energy simulation, total and marginal economic analysis, and consider different scenarios of real discount rates and annual energy price increases. Our analysis shows that cost-optimal thicknesses of insulations for the building envelope elements are significantly higher than those required to meet the current Swedish building code’s minimum energy requirements. For windows, the cost-optimal U-value is about the same as required to fulfil the minimum requirement of the Swedish building code. Overall, large energy and cost savings are achieved when the cost-optimal measures are cumulatively implemented. Compared to the reference, annual space heating reduction of 28-43% is achieved for the building with the cost-optimal measures under the analysed period of 50 years. The cost savings varied between 21 and 188 k€.

Place, publisher, year, edition, pages
Elsevier, 2019. Vol. 158, p. 3760-3767
Series
Energy Procedia, E-ISSN 1876-6102
National Category
Building Technologies
Research subject
Technology (byts ev till Engineering), Civil engineering
Identifiers
URN: urn:nbn:se:lnu:diva-81980DOI: 10.1016/j.egypro.2019.01.879ISI: 000471031704020OAI: oai:DiVA.org:lnu-81980DiVA, id: diva2:1305148
Conference
10th International Conference on Applied Energy (ICAE2018), 22-25 August 2018, Hong Kong, China
Available from: 2019-04-15 Created: 2019-04-15 Last updated: 2019-07-17Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records BETA

Dodoo, AmbroseGustavsson, LeifTettey, Uniben Yao Ayikoe

Search in DiVA

By author/editor
Dodoo, AmbroseGustavsson, LeifTettey, Uniben Yao Ayikoe
By organisation
Department of Building TechnologyDepartment of Built Environment and Energy Technology
Building Technologies

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 17 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf