lnu.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Effects of end-of-life management options for materials on primary energy and greenhouse gas balances of building systems
Linnéuniversitetet, Fakulteten för teknik (FTK), Institutionen för byggteknik (BY).
Linnéuniversitetet, Fakulteten för teknik (FTK), Institutionen för byggd miljö och energiteknik (BET).
Linnéuniversitetet, Fakulteten för teknik (FTK), Institutionen för byggd miljö och energiteknik (BET).
2019 (engelsk)Inngår i: Innovative Solutions for Energy Transitions: Proceedings of the 10th International Conference on Applied Energy (ICAE2018) / [ed] Jinyue Yan, Hong-xing Yang, Hailong Li, Xi Chen, Elsevier, 2019, Vol. 158, s. 4246-4253Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

In this study we have analysed the life cycle primary energy and greenhouse gas (GHG) balances of concrete-frame and timber-frame multi-storey building alternatives, designed to meet the current Swedish building code, considering different end-of-life scenarios. The scenarios include recycling of concrete and steel, cascading by recycling of wood into particle board and energy recovery at the end-of-life of the board, energy recovery of wood by combustion, and landfilling of wood with and without landfill gas (LFG) recovery. The energy recovered is assumed to replace fossil coal or gas. Our analysis accounts for energy and GHG flows in the production and end-of-life phases. We estimate the GHG emission changes achieved per unit of difference in finished wood in buildings or in harvest forest biomass between the timber buildings and the concrete building. The results show that the timber building systems give significantly lower life cycle primary energy balances than the concrete building system for all the end-of-life options. The concrete building system gives higher life cycle GHG balances than the timber alternatives for all the end-of-life options, except when wood is landfill without LFG recovery. The end-of-life primary energy and GHG benefit of wood materials is most significant for energy recovery while the benefit of cascading is low. However, replacing fossil gas instead of fossil coal significantly reduce the carbon benefits of the timber alternatives. The benefits of recycling steel and concrete are small. This study shows that end-of-life options for building materials can offer opportunities to reduce energy use and GHG emissions in the built environment.

sted, utgiver, år, opplag, sider
Elsevier, 2019. Vol. 158, s. 4246-4253
Serie
Energy Procedia, E-ISSN 1876-6102 ; 158
HSV kategori
Forskningsprogram
Teknik, Byggteknik
Identifikatorer
URN: urn:nbn:se:lnu:diva-81981DOI: 10.1016/j.egypro.2019.01.802ISI: 000471031704093Scopus ID: 2-s2.0-85063861519OAI: oai:DiVA.org:lnu-81981DiVA, id: diva2:1305150
Konferanse
10th International Conference on Applied Energy (ICAE2018), 22-25 August 2018, Hong Kong, China
Tilgjengelig fra: 2019-04-15 Laget: 2019-04-15 Sist oppdatert: 2019-08-29bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Dodoo, AmbroseGustavsson, LeifTettey, Uniben Yao Ayikoe

Søk i DiVA

Av forfatter/redaktør
Dodoo, AmbroseGustavsson, LeifTettey, Uniben Yao Ayikoe
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 37 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf