lnu.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A Hida-Malliavin white noise calculus approach to optimal control
University of Oslo, Norway;University of Biskra, Algeria. (Stochastic analysis and stochastic processes)
University of Oslo, Norway.
2018 (engelsk)Inngår i: Infinite Dimensional Analysis Quantum Probability and Related Topics, ISSN 0219-0257, Vol. 21, nr 3, artikkel-id 1850014Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

The classical maximum principle for optimal stochastic control states that if a control û is optimal, then the corresponding Hamiltonian has a maximum at u = û. The first proofs for this result assumed that the control did not enter the diffusion coefficient. Moreover, it was assumed that there were no jumps in the system. Subsequently, it was discovered by Shige Peng (still assuming no jumps) that one could also allow the diffusion coefficient to depend on the control, provided that the corresponding adjoint backward stochastic differential equation (BSDE) for the first-order derivative was extended to include an extra BSDE for the second-order derivatives. In this paper, we present an alternative approach based on Hida-Malliavin calculus and white noise theory. This enables us to handle the general case with jumps, allowing both the diffusion coefficient and the jump coefficient to depend on the control, and we do not need the extra BSDE with second-order derivatives. The result is illustrated by an example of a constrained linear-quadratic optimal control.

sted, utgiver, år, opplag, sider
World Scientific, 2018. Vol. 21, nr 3, artikkel-id 1850014
HSV kategori
Identifikatorer
URN: urn:nbn:se:lnu:diva-82296DOI: 10.1142/S0219025718500145OAI: oai:DiVA.org:lnu-82296DiVA, id: diva2:1307455
Tilgjengelig fra: 2019-04-26 Laget: 2019-04-26 Sist oppdatert: 2019-05-06bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Personposter BETA

Agram, Nacira

Søk i DiVA

Av forfatter/redaktør
Agram, Nacira
I samme tidsskrift
Infinite Dimensional Analysis Quantum Probability and Related Topics

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 110 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf