lnu.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
1-D CNNs for structural damage detection: verification on a structural health monitoring benchmark data
Qatar University, Qatar.ORCID-id: 0000-0003-0530-9552
Qatar University, Qatar.
Qatar University, Qatar.
Qatar University, Qatar; The University of Queensland, Herston, Australia.
Vise andre og tillknytning
2018 (engelsk)Inngår i: Neurocomputing, ISSN 0925-2312, E-ISSN 1872-8286, Vol. 275, s. 1308-1317Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Structural damage detection has been an interdisciplinary area of interest for various engineering fields. While the available damage detection methods have been in the process of adapting machine learning concepts, most machine learning based methods extract “hand-crafted” features which are fixed and manually selected in advance. Their performance varies significantly among various patterns of data depending on the particular structure under analysis. Convolutional neural networks (CNNs), on the other hand, can fuse and simultaneously optimize two major sets of an assessment task (feature extraction and classification) into a single learning block during the training phase. This ability not only provides an improved classification performance but also yields a superior computational efficiency. 1D CNNs have recently achieved state-of-the-art performance in vibration-based structural damage detection; however, it has been reported that the training of the CNNs requires significant amount of measurements especially in large structures. In order to overcome this limitation, this paper presents an enhanced CNN-based approach that requires only two measurement sets regardless of the size of the structure. This approach is verified using the experimental data of the Phase II benchmark problem of structural health monitoring which had been introduced by IASC-ASCE Structural Health Monitoring Task Group. As a result, it is shown that the enhanced CNN-based approach successfully estimated the actual amount of damage for the nine damage scenarios of the benchmark study.

sted, utgiver, år, opplag, sider
Elsevier, 2018. Vol. 275, s. 1308-1317
HSV kategori
Forskningsprogram
Teknik, Byggteknik
Identifikatorer
URN: urn:nbn:se:lnu:diva-88125DOI: 10.1016/j.neucom.2017.09.069OAI: oai:DiVA.org:lnu-88125DiVA, id: diva2:1344141
Tilgjengelig fra: 2019-08-20 Laget: 2019-08-20 Sist oppdatert: 2019-09-12bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Personposter BETA

Abdeljaber, Osama

Søk i DiVA

Av forfatter/redaktør
Abdeljaber, Osama
I samme tidsskrift
Neurocomputing

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 188 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf