lnu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Programming Languages for Data-Intensive HPC Applications: a Systematic Mapping Study
Universidade Nova de Lisboa, Portugal.
Universidade Nova de Lisboa, Portugal.
Universidade Nova de Lisboa, Portugal.
University of Torino, Italy.
Visa övriga samt affilieringar
2020 (Engelska)Ingår i: Parallel Computing, ISSN 0167-8191, E-ISSN 1872-7336, Vol. 91, artikel-id 102584Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

A major challenge in modelling and simulation is the need to combine expertise in both software technologies and a given scientific domain. When High-Performance Computing (HPC) is required to solve a scientific problem, software development becomes a problematic issue. Considering the complexity of the software for HPC, it is useful to identify programming languages that can be used to alleviate this issue. Because the existing literature on the topic of HPC is very dispersed, we performed a Systematic Mapping Study (SMS) in the context of the European COST Action cHiPSet. This literature study maps characteristics of various programming languages for data-intensive HPC applications, including category, typical user profiles, effectiveness, and type of articles. We organised the SMS in two phases. In the first phase, relevant articles are identified employing an automated keyword-based search in eight digital libraries. This lead to an initial sample of 420 papers, which was then narrowed down in a second phase by human inspection of article abstracts, titles and keywords to 152 relevant articles published in the period 2006–2018. The analysis of these articles enabled us to identify 26 programming languages referred to in 33 of relevant articles. We compared the outcome of the mapping study with results of our questionnaire-based survey that involved 57 HPC experts. The mapping study and the survey revealed that the desired features of programming languages for data-intensive HPC applications are portability, performance and usability. Furthermore, we observed that the majority of the programming languages used in the context of data-intensive HPC applications are text-based general-purpose programming languages. Typically these have a steep learning curve, which makes them difficult to adopt. We believe that the outcome of this study will inspire future research and development in programming languages for data-intensive HPC applications.

Ort, förlag, år, upplaga, sidor
Elsevier, 2020. Vol. 91, artikel-id 102584
Nyckelord [en]
High Performance Computing (HPC), Big Data, Data-Intensive Applications, Programming Languages, Domain-Specific Language (DSL), General-Purpose Language (GPL), Systematic Mapping Study (SMS)
Nationell ämneskategori
Datorsystem
Forskningsämne
Data- och informationsvetenskap, Datavetenskap
Identifikatorer
URN: urn:nbn:se:lnu:diva-90011DOI: 10.1016/j.parco.2019.102584OAI: oai:DiVA.org:lnu-90011DiVA, id: diva2:1369493
Tillgänglig från: 2019-11-12 Skapad: 2019-11-12 Senast uppdaterad: 2020-01-29Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Personposter BETA

Pllana, Sabri

Sök vidare i DiVA

Av författaren/redaktören
Pllana, Sabri
Av organisationen
Institutionen för datavetenskap och medieteknik (DM)
I samma tidskrift
Parallel Computing
Datorsystem

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 81 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf