lnu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Fourier characterizations of Pilipović spaces
Linnaeus University, Faculty of Technology, Department of Mathematics.ORCID iD: 0000-0003-1921-8168
Univ Vienna, Austria.
2023 (English)In: Journal of Functional Analysis, ISSN 0022-1236, E-ISSN 1096-0783, Vol. 284, no 1, article id 109724Article in journal (Refereed) Published
Abstract [en]

Let f be a function or distribution on Rd. We characterize Pilipovic space in terms of certain estimates of the involved functions and suitable choices of their fractional Fourier transforms. For the analysis we derive a multi-dimensional version of Phragmen-Lindelof's theorem.

Place, publisher, year, edition, pages
Elsevier, 2023. Vol. 284, no 1, article id 109724
Keywords [en]
Fractional Fourier transforms, Bargmann transform, Multi-dimensional, Phragmén-Lindelöf's theorem
National Category
Mathematical Analysis
Research subject
Mathematics, Mathematics
Identifiers
URN: urn:nbn:se:lnu:diva-117836DOI: 10.1016/j.jfa.2022.109724ISI: 000888075000006Scopus ID: 2-s2.0-85139837239OAI: oai:DiVA.org:lnu-117836DiVA, id: diva2:1717867
Available from: 2022-12-09 Created: 2022-12-09 Last updated: 2023-03-27Bibliographically approved

Open Access in DiVA

fulltext(517 kB)117 downloads
File information
File name FULLTEXT01.pdfFile size 517 kBChecksum SHA-512
13302bc62431f6dd29024688d1bf8a8b51352c1bc61dacbcd04c7fe37bc6a3718dbbfabb944bfd9c98be48978c10df81d01d0865d91e3aad5f16e701450045ef
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Authority records

Toft, Joachim

Search in DiVA

By author/editor
Toft, Joachim
By organisation
Department of Mathematics
In the same journal
Journal of Functional Analysis
Mathematical Analysis

Search outside of DiVA

GoogleGoogle Scholar
Total: 117 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 155 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf