lnu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Pseudo-differential operators on Orlicz modulation spaces
Linnaeus University, Faculty of Technology, Department of Mathematics.ORCID iD: 0000-0003-1921-8168
Istanbul Univ, Türkiye.
2023 (English)In: Journal of Pseudo-Differential Operators and Applications, ISSN 1662-9981, E-ISSN 1662-999X, Vol. 14, no 1, article id 6Article in journal (Refereed) Published
Abstract [en]

We deduce continuity properties for pseudo-differential operators with symbols in quasi-Banach Orlicz modulation spaces when rely on other quasi-Banach Orlicz modulation spaces. In particular we extend some earlier results.

Place, publisher, year, edition, pages
Springer, 2023. Vol. 14, no 1, article id 6
Keywords [en]
Orlicz, Quasi-banach, Quasi-young functionals
National Category
Mathematics
Research subject
Natural Science, Mathematics
Identifiers
URN: urn:nbn:se:lnu:diva-118748DOI: 10.1007/s11868-022-00492-5ISI: 000898866700001Scopus ID: 2-s2.0-85143779437OAI: oai:DiVA.org:lnu-118748DiVA, id: diva2:1731315
Available from: 2023-01-26 Created: 2023-01-26 Last updated: 2023-05-03Bibliographically approved

Open Access in DiVA

fulltext(518 kB)116 downloads
File information
File name FULLTEXT01.pdfFile size 518 kBChecksum SHA-512
382dbd46c1c24d70224584c8afb38fd43ccad51435ad5d2a35edb2cd6a602f103739f0fd745316e14ad24a9abb500abca7a195a446936a4e52bd2e00f13cbd6f
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Authority records

Toft, Joachim

Search in DiVA

By author/editor
Toft, Joachim
By organisation
Department of Mathematics
In the same journal
Journal of Pseudo-Differential Operators and Applications
Mathematics

Search outside of DiVA

GoogleGoogle Scholar
Total: 116 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 85 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf