lnu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Process anti-pattern detection: a case study
University of Western Bohemia, Czech Republic.ORCID iD: 0000-0002-2409-6030
Linnaeus University, Faculty of Technology, Department of computer science and media technology (CM). (DISA;DISTA;DSIQ)
University of Western Bohemia, Czech Republic.ORCID iD: 0000-0001-5617-6396
Linnaeus University, Faculty of Technology, Department of computer science and media technology (CM). (DISA;DISTA;DSIQ)ORCID iD: 0000-0003-1173-5187
Show others and affiliations
2022 (English)In: Proceedings of the 27th European Conference on Pattern Languages of Programs, EuroPLop 2022, Irsee, Germany, July 6-10, 2022, ACM Publications, 2022, p. 1-18, article id 5Conference paper, Published paper (Refereed)
Sustainable development
Not refering to any SDG
Abstract [en]

Anti-patterns are harmful phenomena repeatedly occurring, e.g., in software development projects. Though widely recognized and well-known, their descriptions are traditionally not fit for automated detection. The detection is usually performed by manual audits, or on business process models. Both options are time-, effort- and expertise-heavy, prone to biases, and/or omissions. Meanwhile, collaborative software projects produce much data as a natural side product, capturing their status and day-to-day history. Long-term, our research aims at deriving models for the automated detection of process and project management anti-patterns, applicable to project data. Here, we present a general approach for studies investigating occurrences of these types of anti-patterns in projects and discuss the entire process of such studies in detail, starting from the anti-pattern descriptions in literature. We demonstrate and verify our approach with the Fire Drill anti-pattern detection as a case study, applying it to data from 15 student projects. The results of our study suggest that reliable detection of at least some process and project management anti-patterns in project data is possible, with 13 projects assessed accurately for Fire Drill presence by our automated detection when compared to the ground truth gathered from independent data. The overall approach can be similarly applied to detecting patterns and other phenomena with manifestations in Application Lifecycle Management data.

Place, publisher, year, edition, pages
ACM Publications, 2022. p. 1-18, article id 5
Keywords [en]
Pattern detection, Project management anti-patterns, Software process anti-patterns, ALM tools, Fire Drill
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Computer and Information Sciences Computer Science, Computer Science
Identifiers
URN: urn:nbn:se:lnu:diva-120164DOI: 10.1145/3551902.3551965Scopus ID: 2-s2.0-85148442751ISBN: 9781450395946 (electronic)OAI: oai:DiVA.org:lnu-120164DiVA, id: diva2:1749976
Conference
EuroPLop '22: Proceedings of the 27th European Conference on Pattern Languages of Programs, Irsee, Germany, July 6-10, 2022
Available from: 2023-04-12 Created: 2023-04-12 Last updated: 2023-09-27Bibliographically approved
In thesis
1. Quantifying Process Quality: The Role of Effective Organizational Learning in Software Evolution
Open this publication in new window or tab >>Quantifying Process Quality: The Role of Effective Organizational Learning in Software Evolution
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Real-world software applications must constantly evolve to remain relevant. This evolution occurs when developing new applications or adapting existing ones to meet new requirements, make corrections, or incorporate future functionality. Traditional methods of software quality control involve software quality models and continuous code inspection tools. These measures focus on directly assessing the quality of the software. However, there is a strong correlation and causation between the quality of the development process and the resulting software product. Therefore, improving the development process indirectly improves the software product, too. To achieve this, effective learning from past processes is necessary, often embraced through post mortem organizational learning. While qualitative evaluation of large artifacts is common, smaller quantitative changes captured by application lifecycle management are often overlooked. In addition to software metrics, these smaller changes can reveal complex phenomena related to project culture and management. Leveraging these changes can help detect and address such complex issues.

Software evolution was previously measured by the size of changes, but the lack of consensus on a reliable and versatile quantification method prevents its use as a dependable metric. Different size classifications fail to reliably describe the nature of evolution. While application lifecycle management data is rich, identifying which artifacts can model detrimental managerial practices remains uncertain. Approaches such as simulation modeling, discrete events simulation, or Bayesian networks have only limited ability to exploit continuous-time process models of such phenomena. Even worse, the accessibility and mechanistic insight into such gray- or black-box models are typically very low. To address these challenges, we suggest leveraging objectively captured digital artifacts from application lifecycle management, combined with qualitative analysis, for efficient organizational learning. A new language-independent metric is proposed to robustly capture the size of changes, significantly improving the accuracy of change nature determination. The classified changes are then used to explore, visualize, and suggest maintenance activities, enabling solid prediction of malpractice presence and -severity, even with limited data. Finally, parts of the automatic quantitative analysis are made accessible, potentially replacing expert-based qualitative analysis in parts.

Place, publisher, year, edition, pages
Växjö: Linnaeus University Press, 2023
Series
Linnaeus University Dissertations ; 504
Keywords
Software Size, Software Metrics, Commit Classification, Maintenance Activities, Software Quality, Process Quality, Project Management, Organizational Learning, Machine Learning, Visualization, Optimization
National Category
Computer and Information Sciences Software Engineering Mathematical Analysis Probability Theory and Statistics
Research subject
Computer Science, Software Technology; Computer Science, Information and software visualization; Computer and Information Sciences Computer Science, Computer Science; Statistics/Econometrics
Identifiers
urn:nbn:se:lnu:diva-124916 (URN)10.15626/LUD.504.2023 (DOI)9789180820738 (ISBN)9789180820745 (ISBN)
Public defence
2023-09-29, House D, D1136A, 351 95 Växjö, Växjö, 13:00 (English)
Opponent
Supervisors
Available from: 2023-09-28 Created: 2023-09-27 Last updated: 2024-05-06Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Hönel, SebastianEricsson, MorganLöwe, WelfWingkvist, Anna

Search in DiVA

By author/editor
Picha, PetrHönel, SebastianBrada, PremekEricsson, MorganLöwe, WelfWingkvist, Anna
By organisation
Department of computer science and media technology (CM)
Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 84 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf