lnu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
On-Surface Synthesis of Porosity-Controlled Molecularly Imprinted Polymeric Receptors for the Biotinyl Moiety
Linnaeus University, Faculty of Health and Life Sciences, Department of Chemistry and Biomedical Sciences. (Linnaeus Ctr Biomat Chem, BMC;BBCL)ORCID iD: 0000-0002-3921-4204
Linnaeus University, Faculty of Health and Life Sciences, Department of Chemistry and Biomedical Sciences. Bioorgan & Biophys Chem Lab, SE-39182 Kalmar, Sweden.. (Linnaeus Ctr Biomat Chem, BMC;BBCL)ORCID iD: 0000-0003-4037-1992
Linnaeus University, Faculty of Health and Life Sciences, Department of Chemistry and Biomedical Sciences. (Linnaeus Ctr Biomat Chem, BMC;BBCL)ORCID iD: 0000-0002-0407-6542
2024 (English)In: ACS Applied Polymer Materials, E-ISSN 2637-6105, Vol. 6, no 2, p. 1470-1482Article in journal (Refereed) Published
Abstract [en]

Controlled on-surface synthesis of polymer films using amide-based, environmentally friendly, nonionic deep eutectic solvents (ni-DESs) has been developed to regulate the porous features of the films. An appropriate combination of acetamide (A), urea (U), and their methyl derivatives (N-methylacetamide (NMA) and N-methylurea (NMU)) was used to prepare ni-DES. Polymer films were electrosynthesized using 4-aminobenzoic acid (4-ABA) and pyrrole as monomers in ni-DESs. We presumed that the flickering-cluster-like complexes and the extended H-bond networks in ni-DESs enhance the porosity of the polymer films, thus improving permeability features, as reflected in sensor performance. Electrosynthesized polymer films, imprinted with biotin templates (MIPs), have been tested as receptors for biotinylated targets. Molecular dynamics simulations of the prepolymerization mixture revealed the formed complexes between 4-ABA and biotin comprising high-frequency H-bonds. X-ray photoelectron spectroscopy (XPS) and reflection absorption infrared spectroscopy (RAIRS) studies revealed the structural integrity in the polymer films irrespective of the medium. Scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS) measurements showed a highly corrugated and porous nature for MIPA-U and MIPNMU-U when prepared in A-U and NMU-U ni-DESs. Atomic force microscope (AFM) studies support these observations, displaying an enhancement in the surface roughness from 1.44 nm (MIPaqueous) to 23.6 nm (MIPNMU-U). QCM analysis demonstrated a remarkable improvement in sensitivity of MIPA-U (17.99 +/- 0.72 Hz/mM) and MIPNMU-U (18.40 +/- 0.81 Hz/mM) films toward the biotin methyl ester (BtOMe, biotin derivative) than the MIPaqueous film. The chemosensor devised with the above MIP recognition films selectively recognized BtOMe (LOD = 12.5 ng/mL) and biotinylated biomolecules, as shown by the stability constant K-s values (MIPA-U = 1442 and MIPNMU-U = 1502 M-1). The porous network generated in the polymer films by the flickering-cluster-like complexes present in the ni-DES facilitates the analyte diffusion and recognition. We propose this ni-DES as an economically advantageous and environmentally friendly alternative to conventional ionic liquids and organic solvents in polymer synthesis and to influence polymer morphology for developing hierarchical materials.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2024. Vol. 6, no 2, p. 1470-1482
Keywords [en]
biotin biosensor, electropolymerization, molecularlyimprinted polymer, nonionic deep eutectic solvent, porous polymer films, quartz crystal microbalance
National Category
Polymer Chemistry
Research subject
Chemistry, Organic Chemistry
Identifiers
URN: urn:nbn:se:lnu:diva-127676DOI: 10.1021/acsapm.3c02655ISI: 001152652200001Scopus ID: 2-s2.0-85182006978OAI: oai:DiVA.org:lnu-127676DiVA, id: diva2:1837599
Available from: 2024-02-14 Created: 2024-02-14 Last updated: 2024-03-13Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Suriyanarayanan, SubramanianOlsson, Gustaf D.Nicholls, Ian A.

Search in DiVA

By author/editor
Suriyanarayanan, SubramanianOlsson, Gustaf D.Nicholls, Ian A.
By organisation
Department of Chemistry and Biomedical Sciences
Polymer Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 50 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf