lnu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The quantum-like brain on the cognitive and subcognitive time scales
Växjö University, Faculty of Mathematics/Science/Technology, School of Mathematics and Systems Engineering. Matematik. (Matematik)ORCID iD: 0000-0002-9857-0938
2008 (Swedish)In: Journal of consciousness studies, ISSN 1355-8250, E-ISSN 2051-2201, Vol. 15, no 7, p. 39-77Article in journal (Refereed) Published
Abstract [en]

This article takes as its point of departure the view that the discovery of the mathematical formalism of quantum mechanics (QM) was not merely a discovery of a new mathematical way of dealing with physical, and specifically quantum, processes in nature. It was also a discovery of a general mathematical formalism (in part discovered in mathematics itself earlier), which, supplemented by certain additional rules, consistently described the processing of incomplete information about certain events and contexts in which these events occur. This article proposes a quantum-like (QL) model of the functioning of the brain based on the (Hilbert-space) formalism of quantum mechanics, but now used as part of a QL mathematical model of neural processes in the brain, rather than for describing quantum physical processes. This model is, thus, fundamentally different from the (reductionist) quantum model of the brain and consciousness, according to which cognition arises by virtue of physical quantum processes in the brain. In the present view, the brain is an advanced biological system that developed the ability to create a QL representation of contexts, which, thus, allows one to describe a significant part of its functioning by the QM mathematical formalism. The possibility of such a description has nothing to do with the constitution and workings of the brain as a quantum system (composed of photons, electrons, protons, and so forth). The QL model offered here is based instead on conventional neurophysiological model of the functioning of the brain, even though the brain, the article suggests, does use the QL rule (given by von Neumann trace formula, used in QM) for the calculation of approximate averages for mental functions. The QL model developed in this article has a temporal basis, based on a (hypothetical) argument that cognitive processes are based on at least two time scales: a (very fine) subcognitive one and a (much coarser) cognitive one.

Place, publisher, year, edition, pages
2008. Vol. 15, no 7, p. 39-77
Keywords [en]
The quantum-like brain
National Category
Mathematics
Research subject
Natural Science, Mathematics
Identifiers
URN: urn:nbn:se:vxu:diva-3868OAI: oai:DiVA.org:vxu-3868DiVA, id: diva2:203825
Available from: 2009-01-02 Created: 2009-01-02 Last updated: 2017-12-13Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

http://databas.bib.vxu.se:2451/summary.do?product=WOS&qid=2&SID=X2jIMGBJOn1Bng9N38b&search_mode=GeneralSearch&formValue(summary_mode)=GeneralSearch&page=2

Authority records BETA

Khrennikov, Andrei

Search in DiVA

By author/editor
Khrennikov, Andrei
By organisation
School of Mathematics and Systems Engineering
In the same journal
Journal of consciousness studies
Mathematics

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 456 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf