lnu.sePublications

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt185",{id:"formSmash:upper:j_idt185",widgetVar:"widget_formSmash_upper_j_idt185",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt187_j_idt190",{id:"formSmash:upper:j_idt187:j_idt190",widgetVar:"widget_formSmash_upper_j_idt187_j_idt190",target:"formSmash:upper:j_idt187:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

On relations between classical and quantum theories of information and probabilityPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
2011 (English)Doctoral thesis, comprehensive summary (Other academic)
##### Abstract [en]

##### Place, publisher, year, edition, pages

Växjö, Kalmar: Linnaeus University Press , 2011. , p. 161
##### Series

Linnaeus University Dissertations ; 60/2011
##### Keywords [en]

Born’s rule, Clifford algebra, Deutsch-Josza algorithm, Grover’s algorithm, Hyperbolic interferences, Inverse Born’s rule problem, Probabilistic data, Quantum computing, Quantum error-correcting, Quantum-like representation algorithm, Shor’s algorithm, Simon’s algorithm, Simulation of quantum algorithms
##### National Category

Mathematics
##### Research subject

Natural Science, Mathematics
##### Identifiers

URN: urn:nbn:se:lnu:diva-13830ISBN: 978-91-86491-98-7 (print)OAI: oai:DiVA.org:lnu-13830DiVA, id: diva2:435435
##### Public defence

2011-09-22, Weber, Universitetsplatsen 1, Växjö, 14:15 (English)
##### Opponent

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt556",{id:"formSmash:j_idt556",widgetVar:"widget_formSmash_j_idt556",multiple:true});
##### Supervisors

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt564",{id:"formSmash:j_idt564",widgetVar:"widget_formSmash_j_idt564",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt572",{id:"formSmash:j_idt572",widgetVar:"widget_formSmash_j_idt572",multiple:true}); Available from: 2011-08-18 Created: 2011-08-18 Last updated: 2011-08-18Bibliographically approved
##### List of papers

In this thesis we study quantum-like representation and simulation of quantum algorithms by using classical computers.The quantum--like representation algorithm (QLRA) was introduced by A. Khrennikov (1997) to solve the ``inverse Born's rule problem'', i.e. to construct a representation of probabilistic data-- measured in any context of science-- and represent this data by a complex or more general probability amplitude which matches a generalization of Born's rule.The outcome from QLRA matches the formula of total probability with an additional trigonometric, hyperbolic or hyper-trigonometric interference term and this is in fact a generalization of the familiar formula of interference of probabilities.

We study representation of statistical data (of any origin) by a probability amplitude in a complex algebra and a Clifford algebra (algebra of hyperbolic numbers). The statistical data is collected from measurements of two dichotomous and trichotomous observables respectively. We see that only special statistical data (satisfying a number of nonlinear constraints) have a quantum--like representation.

We also study simulations of quantum computers on classical computers.Although it can not be denied that great progress have been made in quantum technologies, it is clear that there is still a huge gap between the creation of experimental quantum computers and realization of a quantum computer that can be used in applications. Therefore the simulation of quantum computations on classical computers became an important part in the attempt to cover this gap between the theoretical mathematical formulation of quantum mechanics and the realization of quantum computers. Of course, it can not be expected that quantum algorithms would help to solve NP problems for polynomial time on classical computers. However, this is not at all the aim of classical simulation.

The second part of this thesis is devoted to adaptation of the Mathematica symbolic language to known quantum algorithms and corresponding simulations on classical computers. Concretely we represent Simon's algorithm, Deutsch-Josza algorithm, Shor's algorithm, Grover's algorithm and quantum error-correcting codes in the Mathematica symbolic language. We see that the same framework can be used for all these algorithms. This framework will contain the characteristic property of the symbolic language representation of quantum computing and it will be a straightforward matter to include future algorithms in this framework.

1. Simulation of Quantum Algorithms on a Symbolic Computer$(function(){PrimeFaces.cw("OverlayPanel","overlay203062",{id:"formSmash:j_idt624:0:j_idt628",widgetVar:"overlay203062",target:"formSmash:j_idt624:0:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

2. Simulation of Deutsch-Jozsa Algorithm in Mathematica$(function(){PrimeFaces.cw("OverlayPanel","overlay203065",{id:"formSmash:j_idt624:1:j_idt628",widgetVar:"overlay203065",target:"formSmash:j_idt624:1:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

3. Simulation of Simon’s Algorithm in Mathematica$(function(){PrimeFaces.cw("OverlayPanel","overlay275970",{id:"formSmash:j_idt624:2:j_idt628",widgetVar:"overlay275970",target:"formSmash:j_idt624:2:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

4. On consistency of the quantum-like representation algorithm.$(function(){PrimeFaces.cw("OverlayPanel","overlay435357",{id:"formSmash:j_idt624:3:j_idt628",widgetVar:"overlay435357",target:"formSmash:j_idt624:3:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

5. Quantum-like representation algorithm for trichotomous observables.$(function(){PrimeFaces.cw("OverlayPanel","overlay435381",{id:"formSmash:j_idt624:4:j_idt628",widgetVar:"overlay435381",target:"formSmash:j_idt624:4:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

6. On hyperbolic interferences in the quantum-like representation algorithm for the case of triple–valued observables$(function(){PrimeFaces.cw("OverlayPanel","overlay435383",{id:"formSmash:j_idt624:5:j_idt628",widgetVar:"overlay435383",target:"formSmash:j_idt624:5:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

7. On the consistency of the quantum-like representation algorithm for hyperbolic interference.$(function(){PrimeFaces.cw("OverlayPanel","overlay435369",{id:"formSmash:j_idt624:6:j_idt628",widgetVar:"overlay435369",target:"formSmash:j_idt624:6:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

8. A compact program code for simulations of quantum algorithms in classical computers.$(function(){PrimeFaces.cw("OverlayPanel","overlay435423",{id:"formSmash:j_idt624:7:j_idt628",widgetVar:"overlay435423",target:"formSmash:j_idt624:7:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

9. Simulation of quantum error correcting code.$(function(){PrimeFaces.cw("OverlayPanel","overlay435426",{id:"formSmash:j_idt624:8:j_idt628",widgetVar:"overlay435426",target:"formSmash:j_idt624:8:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

10. Representation of probabilistic data by complex probability amplitudes: the case of triple-valued observables.$(function(){PrimeFaces.cw("OverlayPanel","overlay435378",{id:"formSmash:j_idt624:9:j_idt628",widgetVar:"overlay435378",target:"formSmash:j_idt624:9:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

isbn
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1359",{id:"formSmash:j_idt1359",widgetVar:"widget_formSmash_j_idt1359",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1412",{id:"formSmash:lower:j_idt1412",widgetVar:"widget_formSmash_lower_j_idt1412",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1413_j_idt1415",{id:"formSmash:lower:j_idt1413:j_idt1415",widgetVar:"widget_formSmash_lower_j_idt1413_j_idt1415",target:"formSmash:lower:j_idt1413:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});