lnu.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Analysis of pure methods using garbage collection
Linnéuniversitetet, Fakultetsnämnden för naturvetenskap och teknik, Institutionen för datavetenskap, fysik och matematik, DFM.
Linnéuniversitetet, Fakultetsnämnden för naturvetenskap och teknik, Institutionen för datavetenskap, fysik och matematik, DFM.ORCID-id: 0000-0002-7565-3714
2012 (engelsk)Inngår i: Proceedings of the 2012 ACM SIGPLAN Workshop on Memory Systems Performance and Correctness, ACM Press, 2012, s. 48-57Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Parallelization and other optimizations often depend on static dependence analysis. This approach requires methods to be independent regardless of the input data, which is not always the case.

Our contribution is a dynamic analysis "guessing" if methods are pure, i. e., if they do not change state. The analysis is piggybacking on a garbage collector, more specifically, a concurrent, replicating garbage collector. It guesses whether objects are immutable by looking at actual mutations observed by the garbage collector. The analysis is essentially for free. In fact, our concurrent garbage collector including analysis outperforms Boehm's stop-the-world collector (without any analysis), as we show in experiments. Moreover, false guesses can be rolled back efficiently.

The results can be used for just-in-time parallelization allowing an automatic parallelization of methods that are pure over certain periods of time. Hence, compared to parallelization based on static dependence analysis, more programs potentially benefit from parallelization.

sted, utgiver, år, opplag, sider
ACM Press, 2012. s. 48-57
Emneord [en]
garbage collection, automatic parallelization, dynamic analysis, pure functions
HSV kategori
Forskningsprogram
Datavetenskap, Programvaruteknik
Identifikatorer
URN: urn:nbn:se:lnu:diva-25976DOI: 10.1145/2247684.2247694Scopus ID: 2-s2.0-84863436374ISBN: 978-1-4503-1219-6 (tryckt)OAI: oai:DiVA.org:lnu-25976DiVA, id: diva2:624369
Konferanse
ACM SIGPLAN Workshop on Memory Systems Performance and Correctness
Forskningsfinansiär
Swedish Research Council, 2011-6185Tilgjengelig fra: 2013-05-31 Laget: 2013-05-31 Sist oppdatert: 2019-11-11bibliografisk kontrollert
Inngår i avhandling
1. Going beyond on-the fly-garbage collection and improving self-adaptation with enhanced interfaces
Åpne denne publikasjonen i ny fane eller vindu >>Going beyond on-the fly-garbage collection and improving self-adaptation with enhanced interfaces
2019 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
sted, utgiver, år, opplag, sider
Växjö: Linnaeus univetersity press, 2019. s. 25, 145-153
Serie
Linnaeus University Dissertations ; 361
HSV kategori
Forskningsprogram
Data- och informationsvetenskap, Datavetenskap
Identifikatorer
urn:nbn:se:lnu:diva-89999 (URN)9789188898890 (ISBN)9789188898906 (ISBN)
Disputas
2019-10-18, Weber, Hus K, Växjö, 13:10 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2019-11-11 Laget: 2019-11-11 Sist oppdatert: 2019-11-27bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopusACM Auther-Izer

Personposter BETA

Österlund, ErikLöwe, Welf

Søk i DiVA

Av forfatter/redaktør
Österlund, ErikLöwe, Welf
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 153 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf