lnu.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Estimation of Parameters Sensitivity for Scientific Workflows
University of Vienna.
University of Vienna.
University of Vienna.
University of Vienna.
2009 (engelsk)Inngår i: 2009 International Conference on Parallel Processing Workshops, IEEE, 2009, s. 457-462Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Usually workflow activities in the scientific domain depend on a collection of parameters. These parameters determine the output of the activity, and consequently the output of the whole workflow. In the scientific domain, workflows have exploratory nature and are used to understand a scientific phenomenon or answer scientific questions. In the process of a scientific experiment a workflow is executed multiple times using various values of the parameters of activities. It is relevant to identify (1) which parameter strongly affects the overall result of the workflow and (2) for which combination of parameter values we obtain the expected result. Foreseeing these issues, in this paper we present our methodology to estimate the significance of all scientific workflow parameters as well as to estimate the most significant parameter to the workflow. The estimation of parameter significance will enable the scientist to fine tune, and optimize his results efficiently. Furthermore, we empirically validate our methodology on Non-Invasive Glucose Measurement workflow and discuss our results. The NIGM workflow uses the neural network model to calculate the glucose level in patient blood. The neural network model has a set of parameters, which affect the result of the workflow significantly. But, unfortunately the impact significance of these parameters is commonly unknown to the user. We present our approach for estimating and quantifying impact significance of neural network parameters.

sted, utgiver, år, opplag, sider
IEEE, 2009. s. 457-462
HSV kategori
Identifikatorer
URN: urn:nbn:se:lnu:diva-28218DOI: 10.1109/ICPPW.2009.9ISBN: 978-1-4244-4923-1 (tryckt)OAI: oai:DiVA.org:lnu-28218DiVA, id: diva2:641210
Konferanse
The 38th International Conference on Parallel Processing Workshops, ICPPW 2009, 22-25 Sept. 2009, Vienna
Tilgjengelig fra: 2013-08-15 Laget: 2013-08-15 Sist oppdatert: 2019-01-17bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Personposter BETA

Pllana, Sabri

Søk i DiVA

Av forfatter/redaktør
Pllana, Sabri

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 143 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf