lnu.sePublikationer
Driftinformation
Ett driftavbrott i samband med versionsuppdatering är planerat till 24/9-2024, kl 12.00-14.00. Under den tidsperioden kommer DiVA inte att vara tillgängligt
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Decision Algebra: A General Approach to Learning and Using Classifiers
Linnéuniversitetet, Fakulteten för teknik (FTK), Institutionen för datavetenskap och medieteknik (DM), Institutionen för datavetenskap (DV). (Software Technology)
2015 (Engelska)Doktorsavhandling, monografi (Övrigt vetenskapligt)
Abstract [en]

Processing decision information is a vital part of Computer Science fields in which pattern recognition problems arise. Decision information can be generalized as alternative decisions (or classes), attributes and attribute values, which are the basis for classification. Different classification approaches exist, such as decision trees, decision tables and Naïve Bayesian classifiers, which capture and manipulate decision information in order to construct a specific decision model (or classifier). These approaches are often tightly coupled to learning strategies, special data structures and the special characteristics of the decision information captured, etc. The approaches are also connected to the way of how certain problems are addressed, e.g., memory consumption, low accuracy, etc. This situation causes problems for a simple choice, comparison, combination and manipulation of different decision models learned over the same or different samples of decision information. The choice and comparison of decision models are not merely the choice of a model with a higher prediction accuracy and a comparison of prediction accuracies, respectively. We also need to take into account that a decision model, when used in a certain application, often has an impact on the application's performance. Often, the combination and manipulation of different decision models are implementation- or application-specific, thus, lacking the generality that leads to the construction of decision models with combined or modified decision information. They also become difficult to transfer from one application domain to another. In order to unify different approaches, we define Decision Algebra, a theoretical framework that presents decision models as higher order decision functions that abstract from their implementation details. Decision Algebra defines the operations necessary to decide, combine, approximate, and manipulate decision functions along with operation signatures and general algebraic laws. Due to its algebraic completeness (i.e., a complete algebraic semantics of operations and its implementation efficiency), defining and developing decision models is simple as such instances require implementing just one core operation based on which other operations can be derived. Another advantage of Decision Algebra is composability: it allows for combination of decision models constructed using different approaches. The accuracy and learning convergence properties of the combined model can be proven regardless of the actual approach. In addition, the applications that process decision information can be defined using Decision Algebra regardless of the different classification approaches. For example, we use Decision Algebra in a context-aware composition domain, where we showed that context-aware applications improve performance when using Decision Algebra. In addition, we suggest an approach to integrate this context-aware component into legacy applications.

Ort, förlag, år, upplaga, sidor
Växjö: Linnaeus University Press, 2015. , s. 192
Serie
Linnaeus University Dissertations ; 209
Nyckelord [en]
classification, decision model, classifier, Decision Algebra, decision function
Nationell ämneskategori
Datavetenskap (datalogi)
Forskningsämne
Data- och informationsvetenskap, Datavetenskap
Identifikatorer
URN: urn:nbn:se:lnu:diva-43238Libris ID: 17961359ISBN: 9789187925474 (tryckt)OAI: oai:DiVA.org:lnu-43238DiVA, id: diva2:812146
Disputation
2015-02-27, Weber, Hus K, Växjö, 13:00 (Engelska)
Opponent
Handledare
Tillgänglig från: 2015-05-17 Skapad: 2015-05-16 Senast uppdaterad: 2024-02-08Bibliografiskt granskad

Open Access i DiVA

Doctoral Thesis (Fulltext)(4197 kB)1297 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 4197 kBChecksumma SHA-512
23764ff4a8943bedf70ff71a2fe8621216a5a41c66cdc317a8e7f1432d93f462449e00a95187a5b3f603b315faa4e1c2799d1de20c72cd5948d6f48842833d01
Typ fulltextMimetyp application/pdf

Övriga länkar

Buy Book (SEK 250 + VAT and postage) lnupress@lnu.se

Person

Danylenko, Antonina

Sök vidare i DiVA

Av författaren/redaktören
Danylenko, Antonina
Av organisationen
Institutionen för datavetenskap (DV)
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 1299 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

isbn
urn-nbn

Altmetricpoäng

isbn
urn-nbn
Totalt: 1691 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf