lnu.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Acute Toxicity-Supported Chronic Toxicity Prediction: A k-Nearest Neighbor Coupled Read-Across Strategy
Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för kemi och biomedicin (KOB). (BBCL)ORCID-id: 0000-0003-4158-4148
Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för kemi och biomedicin (KOB). (CCBG;Linnaeus Ctr Biomat Chem, BMC)ORCID-id: 0000-0001-8696-3104
Linnéuniversitetet, Fakulteten för Hälso- och livsvetenskap (FHL), Institutionen för kemi och biomedicin (KOB). (BBCL;Linnaeus Ctr Biomat Chem, BMC)ORCID-id: 0000-0002-0407-6542
2015 (engelsk)Inngår i: International Journal of Molecular Sciences, ISSN 1422-0067, E-ISSN 1422-0067, Vol. 16, nr 5, s. 11659-11677Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

k-nearest neighbor (k-NN) classification model was constructed for 118 RDT NEDO (Repeated Dose Toxicity New Energy and industrial technology Development Organization; currently known as the Hazard Evaluation Support System (HESS)) database chemicals, employing two acute toxicity (LD50)-based classes as a response and using a series of eight PaDEL software-derived fingerprints as predictor variables. A model developed using Estate type fingerprints correctly predicted the LD50 classes for 70 of 94 training set chemicals and 19 of 24 test set chemicals. An individual category was formed for each of the chemicals by extracting its corresponding k-analogs that were identified by k-NN classification. These categories were used to perform the read-across study for prediction of the chronic toxicity, i.e., Lowest Observed Effect Levels (LOEL). We have successfully predicted the LOELs of 54 of 70 training set chemicals (77%) and 14 of 19 test set chemicals (74%) to within an order of magnitude from their experimental LOEL values. Given the success thus far, we conclude that if the k-NN model predicts LD50classes correctly for a certain chemical, then the k-analogs of such a chemical can be successfully used for data gap filling for the LOEL. This model should support the in silico prediction of repeated dose toxicity.

sted, utgiver, år, opplag, sider
2015. Vol. 16, nr 5, s. 11659-11677
Emneord [en]
k-nearest neighbor;classification model; Estate fingerprint;LD50; LOEL; read-across; category formation
HSV kategori
Forskningsprogram
Kemi, Organisk kemi
Identifikatorer
URN: urn:nbn:se:lnu:diva-45017DOI: 10.3390/ijms160511659ISI: 000356241400146PubMedID: 26006240Scopus ID: 2-s2.0-84930643618OAI: oai:DiVA.org:lnu-45017DiVA, id: diva2:825302
Forskningsfinansiär
EU, FP7, Seventh Framework Programme, 238701Tilgjengelig fra: 2015-06-23 Laget: 2015-06-23 Sist oppdatert: 2018-11-02bibliografisk kontrollert

Open Access i DiVA

fulltext(560 kB)235 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 560 kBChecksum SHA-512
91a08bbcc21b0600446a2504d23e3eae3ea932b2515d2c6b24d93009324c14e2ad2324396bf94d854ff670b5d0d64062d3bf76afc896257d52ac20aad16bdadb
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstPubMedScopus

Personposter BETA

Chavan, SwapnilFriedman, RanNicholls, Ian A.

Søk i DiVA

Av forfatter/redaktør
Chavan, SwapnilFriedman, RanNicholls, Ian A.
Av organisasjonen
I samme tidsskrift
International Journal of Molecular Sciences

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 235 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 219 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf