lnu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Oxygenation of anoxic sediments triggers hatching of zooplankton eggs
Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science. (Ctr Ecol & Evolut Microbial Model Syst EEMiS)ORCID iD: 0000-0001-9005-5168
Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science. (Ctr Ecol & Evolut Microbial Model Syst EEMiS)
Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science. (Ctr Ecol & Evolut Microbial Model Syst EEMiS)ORCID iD: 0000-0002-9622-3318
Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science. (MPEA;Zooplankton Ecology)ORCID iD: 0000-0002-3740-5998
2015 (English)In: Proceedings of the Royal Society of London. Biological Sciences, ISSN 0962-8452, E-ISSN 1471-2954, Vol. 282, no 1817, article id 20152025Article in journal (Refereed) Published
Abstract [en]

Many coastal marine systems have extensive areas with anoxic sediments and it is not well known how these conditions affect the benthic-pelagic coupling. Zooplankton lay their eggs in the pelagic zone, and some sink and lie dormant in the sediment, before hatched zooplankton return to the water column. In this study, we investigated how oxygenation of long-term anoxic sediments affects the hatching frequency of dormant zooplankton eggs. Anoxic sediments from the brackish Baltic Sea were sampled and incubated for 26 days with constant aeration whereby, the sediment surface and the overlying water were turned oxic. Newly hatched rotifers and copepod nauplii (juveniles) were observed after 5 and 8 days, respectively. Approximately 1.5 × 105 nauplii per m-2 emerged from sediment turned oxic compared to 0.02 × 105 m-2 from controls maintained anoxic. This study demonstrated that re-oxygenation of anoxic sediments activated a large pool of buried zooplankton eggs, strengthening the benthic-pelagic coupling of the system. Modelling of the studied anoxic zone suggested that a substantial part of the pelagic copepod population can derive from hatching of dormant eggs. We suggest that this process should be included in future studies to understand population dynamics and carbon flows in marine pelagic systems.

Place, publisher, year, edition, pages
2015. Vol. 282, no 1817, article id 20152025
National Category
Ecology
Research subject
Ecology, Aquatic Ecology
Identifiers
URN: urn:nbn:se:lnu:diva-46523DOI: 10.1098/rspb.2015.2025ISI: 000363485700018PubMedID: 26468249Scopus ID: 2-s2.0-84945237739OAI: oai:DiVA.org:lnu-46523DiVA, id: diva2:857307
Projects
EcoChange
Funder
Ecosystem dynamics in the Baltic Sea in a changing climate perspective - ECOCHANGEAvailable from: 2015-09-28 Created: 2015-09-28 Last updated: 2018-10-24Bibliographically approved
In thesis
1. Ecology and evolution of coastal Baltic Sea 'dead zone' sediments
Open this publication in new window or tab >>Ecology and evolution of coastal Baltic Sea 'dead zone' sediments
2018 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Since industrialization and the release of agricultural fertilizers began, coastal and open waters of the Baltic Sea have been loaded with nutrients. This has increased the growth of algal blooms and because a portion of the algal organic matter sinks to the sea floor, hypoxia has increased. In conjunction to this, natural stratification of the water column makes the bottom zones especially prone to oxygen depletion due to microbes using oxygen and organic matter to grow. Hypoxia (<2 mg/L O2) and anoxia (no oxygen) are deadly for many organisms and only specialists (typically some microorganisms) are able to survive. Due to the harsh conditions these bottom zones are commonly referred to as 'dead zones'. The focus of this thesis was to look closer at the microbial community changes upon degradation of algal organic matter and the effect of oxygenating coastal Baltic Sea 'dead zone' sediments on chemistry fluxes, phyto- and zooplankton, the microbial community structure, and microbial metabolic responses. Results from field sampling and incubation experiments showed that degradation of algal biomass in nutrient rich oxic sediment was partly related to the growth of archaea; that oxygenation of anoxic sediments decreased stored organic matter plus triggered hatching of zooplankton eggs increasing the benthic-pelagic coupling; and resting diatoms buried in hypoxic/anoxic sediment were alive and triggered to germinate by light rather than oxygen. Changes in the microbial community structures to oxygen shifts were dependent on the historical exposure to oxygen and that microbial generalists adapted to episodic oxygenation were favored during oxygen shifts. Facultative anaerobic sulfur/sulfide oxidizing bacterial genera were favored upon oxygenation of hypoxic/anoxic sediment plus sulfur cycling and nitrogen fixation genes were abundant. Finally, it was discovered that oxygenation regulates metabolic processes involved in the sulfur and methane cycles, especially by metabolic processes that results in a decrease of toxic hydrogen sulfide as well as the potent greenhouse gas methane. This thesis has explored how 'dead zones' change and develop during oxygen shifts and that re-oxygenation of ‘dead zones’ could bring favorable conditions in the sediment surface for reestablishment of new micro- and macroorganism communities.

Abstract [sv]

Arealerna av 'döda bottnar' i Östersjön har ökat som en följd av industrialiseringen och användandet av gödningsmedel. Föroreningen av Östersjöns kust och öppna vatten med näringsämnen leder till en ökad tillväxt av algblomningar. En del av dessa alger sjunker till havsbotten och orsakar att så kallad hypoxia utvecklas. Den naturliga stratifieringen av vattenkolummen avgränsar yt- och bottenvattnet vilket leder till att bottenzonen är speciellt utsatt för syrebrist. Detta eftersom mikroorganismer i bottensedimentet använder syre och organiskt material för att leva. Hypoxia (<2 mg/L O2) och anoxia (inget syre) är dödligt för de flesta organismer och endast specialiserade organismer (vanligtvis vissa mikroorganismer) kan överleva. Det är av denna anledning dessa bottenzoner ofta kallas för 'döda bottnar'. Målet med denna avhandling var att undersöka förändringar i de mikrobiologiska samhällena vid nedbrytning av organiskt algmaterial, och undersöka vilken effekt syresättning har på ekologin i döda bottensediment i Östersjöns kust. I mer detalj studerades kemiska flöden, växt- och djurplankton, samt mikrobiologiska samhällen och deras metaboliska processer. Resultaten från fältprovtagningar och inkubationer i laboratoriet visade att nedbrytning av algmaterial i syrerikt sediment till viss del gynnade arkéer; syretillsättning av anoxiska sediment minskade det lagrade organiska materialet och ledde till ökad kläckning av djurplanktonägg; vilande kiselalger begravda i hypoxisk/anoxisk sediment var levande och vaknade vid tillförsel av ljus snarare än syre. Förändringar i mikrobiologiska samhällen vid syreförändringar var beroende av historisk exponering av syre i sedimentytan. Det observerades också att mikroorganismer anpassade till episodiska förändringar i syre gynnades. Fakultativt anaerobiska svavel/sulfidoxiderande bakteriesläkten gynnades efter syresättning av hypoxisk/anoxiskt sediment och gener involverade i omvandling av svavelämnen och kvävefixering var vanliga. Slutligen visade resultaten att syresättning reglerar metaboliska processer involverade i kretsloppen för svavel och metan. Speciellt genom processer som leder till en minskning av den gifta gasen svavelväte och växthusgasen metan. Denna avhandling har undersökt hur döda bottensediment förändras och utvecklas vid skiftande syreförhållanden och visar att syresättning av 'döda bottnar' kan skapa gynnsamma förhållanden i sedimentytan för återetablering av mikro- och makroorganismsamhällen. 

Place, publisher, year, edition, pages
Växjö: Linnaeus University Press, 2018
Series
Linnaeus University Dissertations ; 302/2018
Keywords
Baltic Sea, sediment, oxygen, metatranscriptomics, metagenomics, 16S rRNA gene, RNA-seq, dead zone, re-oxygenation
National Category
Ecology
Research subject
Ecology, Aquatic Ecology
Identifiers
urn:nbn:se:lnu:diva-69710 (URN)978-91-88761-00-2 (ISBN)978-91-88761-01-9 (ISBN)
Public defence
2018-02-02, Fullriggaren, Landgången 4, Kalmar, 13:30 (English)
Opponent
Supervisors
Available from: 2018-01-12 Created: 2018-01-11 Last updated: 2018-11-16Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records BETA

Broman, EliasBrüsin, MartinDopson, MarkHylander, Samuel

Search in DiVA

By author/editor
Broman, EliasBrüsin, MartinDopson, MarkHylander, Samuel
By organisation
Department of Biology and Environmental Science
In the same journal
Proceedings of the Royal Society of London. Biological Sciences
Ecology

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 327 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf