lnu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Fine-Grained Recording of Student Programming Sessions to Improve Teaching and Time Estimations
Linnéuniversitetet, Fakulteten för teknik (FTK), Institutionen för datavetenskap (DV).ORCID-id: 0000-0001-5335-5196
Linnéuniversitetet, Fakulteten för teknik (FTK), Institutionen för datavetenskap (DV).ORCID-id: 0000-0003-1154-5308
Linnéuniversitetet, Fakulteten för teknik (FTK), Institutionen för datavetenskap (DV).ORCID-id: 0000-0003-1173-5187
Linnéuniversitetet, Fakulteten för teknik (FTK), Institutionen för datavetenskap (DV).ORCID-id: 0000-0002-0835-823X
2015 (Engelska)Ingår i: IFIP TC3 Working Conference “A New Culture of Learning: Computing and next Generations” / [ed] Andrej Brodnik, Cathy Lewin, 2015, s. 264-274Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

To have direct observation of students during an online programming course is impossible. This makes it harder for teachers to help struggling students. By using an online programming environment we have the opportunity to record what the students actually do to solve an assignment. We can analyse the recordings and provide teachers with valuable information. We developed and used an online programming toolwith fine-grained event logging to observe how our students solve problems. Our tool provides descriptive statistics and accurate replays of a student’s programming sessions, including mouse movements. We used the tool in a course and collected 1028 detailed recordings. We compare fine-grained logging with existing coarsegrained logging solutions to estimate assignment-solving time. We find that time aggregations are improved by including time for active reading and navigation enabled by the increased granularity. We also divide the time users spent into editing (on average 14.8%), active use (on average 37.8%), passive use (on average 29.0%), and also estimate time used for breaks (on average 18.2%).Finally wesee a correlation between early student submission results and students that hand in later, but also see an example where the results differ significantly.

Ort, förlag, år, upplaga, sidor
2015. s. 264-274
Nyckelord [en]
Computer Science Education, Learning Analytics, Educational Data Mining
Nationell ämneskategori
Datavetenskap (datalogi)
Forskningsämne
Data- och informationsvetenskap, Datavetenskap
Identifikatorer
URN: urn:nbn:se:lnu:diva-49403ISBN: 978-609-95760-0-8 (tryckt)OAI: oai:DiVA.org:lnu-49403DiVA, id: diva2:898719
Konferens
IFIP TC3 Working Conference "A New Culture of Learning: Computing and Next Generations" July 1-3, 2015, Vilnius, Lithuania
Tillgänglig från: 2016-01-29 Skapad: 2016-01-29 Senast uppdaterad: 2018-01-10Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

IFIP TC3 Proceedings

Personposter BETA

Toll, DanielOlsson, TobiasEricsson, MorganWingkvist, Anna

Sök vidare i DiVA

Av författaren/redaktören
Toll, DanielOlsson, TobiasEricsson, MorganWingkvist, Anna
Av organisationen
Institutionen för datavetenskap (DV)
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetricpoäng

isbn
urn-nbn
Totalt: 712 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf