lnu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Towards reproducibility in recommender-systems research
Docear, Germany ; Konstanz University, Germany.
Linnéuniversitetet, Fakulteten för teknik (FTK), Institutionen för medieteknik (ME). Docear, Germany.
Docear, Germany ; Otto-von-Guericke University, Germany.
Technische Universität Berlin, Germany.
Visa övriga samt affilieringar
2016 (Engelska)Ingår i: User modeling and user-adapted interaction, ISSN 0924-1868, E-ISSN 1573-1391, Vol. 26, nr 1, s. 69-101Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Numerous recommendation approaches are in use today. However, comparing their effectiveness is a challenging task because evaluation results are rarely reproducible. In this article, we examine the challenge of reproducibility in recommender-system research. We conduct experiments using Plista’s news recommender system, and Docear’s research-paper recommender system. The experiments show that there are large discrepancies in the effectiveness of identical recommendation approaches in only slightly different scenarios, as well as large discrepancies for slightly different approaches in identical scenarios. For example, in one news-recommendation scenario, the performance of a content-based filtering approach was twice as high as the second-best approach, while in another scenario the same content-based filtering approach was the worst performing approach. We found several determinants that may contribute to the large discrepancies observed in recommendation effectiveness. Determinants we examined include user characteristics (gender and age), datasets, weighting schemes, the time at which recommendations were shown, and user-model size. Some of the determinants have interdependencies. For instance, the optimal size of an algorithms’ user model depended on users’ age. Since minor variations in approaches and scenarios can lead to significant changes in a recommendation approach’s performance, ensuring reproducibility of experimental results is difficult. We discuss these findings and conclude that to ensure reproducibility, the recommender-system community needs to (1) survey other research fields and learn from them, (2) find a common understanding of reproducibility, (3) identify and understand the determinants that affect reproducibility, (4) conduct more comprehensive experiments, (5) modernize publication practices, (6) foster the development and use of recommendation frameworks, and (7) establish best-practice guidelines for recommender-systems research. © 2016, Springer Science+Business Media Dordrecht.

Ort, förlag, år, upplaga, sidor
2016. Vol. 26, nr 1, s. 69-101
Nyckelord [en]
Evaluation, Experimentation, Recommender systems, Reproducibility
Nationell ämneskategori
Datorsystem
Forskningsämne
Data- och informationsvetenskap, Datavetenskap
Identifikatorer
URN: urn:nbn:se:lnu:diva-56225DOI: 10.1007/s11257-016-9174-xISI: 000373021900003Scopus ID: 2-s2.0-84960395171OAI: oai:DiVA.org:lnu-56225DiVA, id: diva2:957205
Tillgänglig från: 2016-09-01 Skapad: 2016-08-31 Senast uppdaterad: 2017-11-28Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopusFulltext (read only)

Personposter BETA

Breitinger, Corinna

Sök vidare i DiVA

Av författaren/redaktören
Breitinger, Corinna
Av organisationen
Institutionen för medieteknik (ME)
I samma tidskrift
User modeling and user-adapted interaction
Datorsystem

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 198 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf