lnu.sePublications

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt175",{id:"formSmash:upper:j_idt175",widgetVar:"widget_formSmash_upper_j_idt175",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt182_j_idt191",{id:"formSmash:upper:j_idt182:j_idt191",widgetVar:"widget_formSmash_upper_j_idt182_j_idt191",target:"formSmash:upper:j_idt182:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Characterization of 2-ramified power seriesPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
2017 (English)In: Journal of Number Theory, ISSN 0022-314X, E-ISSN 1096-1658, Vol. 174, p. 258-273Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

Elsevier, 2017. Vol. 174, p. 258-273
##### Keywords [en]

Lower ramification numbers, iterations of power series, difference equations, arithmetic dynamics
##### National Category

Other Mathematics
##### Research subject

Natural Science, Mathematics
##### Identifiers

URN: urn:nbn:se:lnu:diva-58627DOI: 10.1016/j.jnt.2016.10.005ISI: 000392902700016Scopus ID: 2-s2.0-85006507544OAI: oai:DiVA.org:lnu-58627DiVA, id: diva2:1051531
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt640",{id:"formSmash:j_idt640",widgetVar:"widget_formSmash_j_idt640",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt648",{id:"formSmash:j_idt648",widgetVar:"widget_formSmash_j_idt648",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt655",{id:"formSmash:j_idt655",widgetVar:"widget_formSmash_j_idt655",multiple:true});
##### Note

##### In thesis

In this paper we study lower ramification numbers of power series tangent to the identity that are defined over fields of positive characteristics p. Let g be such a series, then g has a fixed point at the origin and the corresponding lower ramification numbers of g are then, up to a constant, the degree of the first non-linear term of p-power iterates of g. The result is a complete characterization of power series g having ramification numbers of the form 2 ( 1 + p + âŠ + p n ) . Furthermore, in proving said characterization we explicitly compute the first significant terms of g at its pth iterate.

Correction published in: Nordqvist, Jonas. 2017. Corrigendum to “Characterization of 2-ramified power series” [J. Number Theory 174 (2017) 258–273], Journal of Number Theory, 178: 208.

Available from: 2016-12-02 Created: 2016-12-02 Last updated: 2019-09-06Bibliographically approved1. Ramification numbers and periodic points in arithmetic dynamical systems$(function(){PrimeFaces.cw("OverlayPanel","overlay1175046",{id:"formSmash:j_idt1430:0:j_idt1434",widgetVar:"overlay1175046",target:"formSmash:j_idt1430:0:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

doi
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1908",{id:"formSmash:j_idt1908",widgetVar:"widget_formSmash_j_idt1908",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1961",{id:"formSmash:lower:j_idt1961",widgetVar:"widget_formSmash_lower_j_idt1961",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1962_j_idt1964",{id:"formSmash:lower:j_idt1962:j_idt1964",widgetVar:"widget_formSmash_lower_j_idt1962_j_idt1964",target:"formSmash:lower:j_idt1962:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});