lnu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A continuum mechanics framework and a constitutive model for remodelling of collagen gels and collagenous tissues
Royal Institute of Technology (KTH).ORCID iD: 0000-0001-7373-5866
2010 (English)In: Journal of the mechanics and physics of solids, ISSN 0022-5096, E-ISSN 1873-4782, Vol. 58, no 6, p. 918-933Article in journal (Refereed) Published
Abstract [en]

Collagen is a very important protein of the human body and is responsible for the structural stability of many body components. Furthermore, collagen fibre networks are able to grow and remodel themselves, which enables them to adjust to varying physiological conditions. This remodelling is accomplished by fibre-producing cells, such as fibroblasts. The ability to adjust to new physiological conditions is very important, for example in wound healing. In the present paper, a theoretical framework for modelling collagenous tissues and collagen gels is proposed. Continuum mechanics is employed to describe the kinematics of the collagen, and affine deformations of fibres are assumed. Biological soft tissues can be approximated as being hyperelastic, and the constitutive model for the collagen fabric is therefore formulated in terms of a strain energy function. This strain energy function includes a density function that describes the distribution of the collagen fibre orientation. The density function evolves according to an evolution law, where fibres tend to reorient towards the direction of maximum Cauchy stress. The remodelling of the collagen network is also assumed to include a pre-stretching of collagen fibres, accomplished by fibroblasts. The theoretical framework is applied to experiments performed on collagen gels, where gels were exposed to remodelling under both biaxial and uniaxial constraints. The proposed model was able to predict both the resulting collagen distribution and the resulting stress–strain relationships obtained for the remodelled collagen gels. The influence of the most important model parameters is demonstrated, and it appears that there is a fairly unique set of model parameters that gives an optimal fit to the experimental data.

Place, publisher, year, edition, pages
2010. Vol. 58, no 6, p. 918-933
National Category
Other Medical Engineering
Identifiers
URN: urn:nbn:se:lnu:diva-58898DOI: 10.1016/j.jmps.2010.03.005OAI: oai:DiVA.org:lnu-58898DiVA, id: diva2:1054991
Available from: 2016-12-09 Created: 2016-12-09 Last updated: 2024-08-29Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Kroon, Martin

Search in DiVA

By author/editor
Kroon, Martin
In the same journal
Journal of the mechanics and physics of solids
Other Medical Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 119 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf