lnu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Numerical analysis of dynamic crack propagation in biaxially strained rubber sheets
Royal Institute of Technology, (KTH).
Royal Institute of Technology, (KTH).
2014 (English)In: Engineering Fracture Mechanics, ISSN 0013-7944, E-ISSN 1873-7315, Vol. 124/125, 1-17 p.Article in journal (Refereed) Published
Abstract [en]

This paper proposes a computational framework for dynamic crack propagation in rubber in which a nonlinear finite element analysis using cohesive zone modeling approach is used. A suddenly initiated crack at the center of biaxially stretched sheet problem is studied under plane stress conditions. A transient dynamic analysis using implicit time integration scheme is performed. In the constitutive modeling, the continuum is characterized by finite-viscoelasticity theory and coupled with the fracture processes using a cohesive zone model. This computational framework was introduced previously by the present authors (Elmukashfi and Kroon, 2012). In the current work, the use of a rate-dependent cohesive model is examined in addition to investigation of generalized biaxial loading cases. A Kelvin–Voigt element is used to describe the rate-dependent cohesive model wherein the spring is described by a bilinear law and dashpot with a constant viscosity is adopted. An explicit integration is used to incorporate the rate-dependent cohesive model in the finite element environment. A parametric study over the cohesive viscosity is performed and the steady crack propagation velocity is evaluated and compared with experimental data. It appears that the viscosity varies with the crack speed. Further, the total work of fracture is estimated using rate-independent cohesive law such that the strength of the cohesive zone is assumed to be constant and the separation work per unit area is determined form the experimental data. The results show that fracture-related processes, i.e. creation of new surfaces, cavitation and crystallization; contribute to the total work of fracture in a contradictory manner.

Place, publisher, year, edition, pages
2014. Vol. 124/125, 1-17 p.
National Category
Textile, Rubber and Polymeric Materials
Research subject
Technology (byts ev till Engineering), Mechanical Engineering
Identifiers
URN: urn:nbn:se:lnu:diva-58918DOI: 10.1016/j.engfracmech.2014.04.025OAI: oai:DiVA.org:lnu-58918DiVA: diva2:1055011
Available from: 2016-12-09 Created: 2016-12-09 Last updated: 2016-12-16Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Kroon, Martin
In the same journal
Engineering Fracture Mechanics
Textile, Rubber and Polymeric Materials

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 35 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf