lnu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Experimental and computational asessment of F-actin influence in regulating cellular stiffness and relaxation behaviour of fibroblasts
Royal Institute of Technology, (KTH).
Royal Institute of Technology, (KTH).
Royal Institute of Technology, (KTH).
SP Technical Research Institute of Sweden.
Show others and affiliations
2016 (English)In: Journal of The Mechanical Behavior of Biomedical Materials, ISSN 1751-6161, E-ISSN 1878-0180, Vol. 59, 168-184 p.Article in journal (Refereed) Published
Abstract [en]

In biomechanics, a complete understanding of the structures and mechanisms that regulate cellular stiffness at a molecular level remain elusive. In this paper, we have elucidated the role of filamentous actin (F-actin) in regulating elastic and viscous properties of the cytoplasm and the nucleus. Specifically, we performed colloidal-probe atomic force microscopy (AFM) on BjhTERT fibroblast cells incubated with Latrunculin B (LatB), which results in depolymerisation of F-actin, or DMSO control. We found that the treatment with LatB not only reduced cellular stiffness, but also greatly increased the relaxation rate for the cytoplasm in the peripheral region and in the vicinity of the nucleus. We thus conclude that F-actin is a major determinant in not only providing elastic stiffness to the cell, but also in regulating its viscous behaviour. To further investigate the interdependence of different cytoskeletal networks and cell shape, we provided a computational model in a finite element framework. The computational model is based on a split strain energy function of separate cellular constituents, here assumed to be cytoskeletal components, for which a composite strain energy function was defined. We found a significant influence of cell geometry on the predicted mechanical response. Importantly, the relaxation behaviour of the cell can be characterised by a material model with two time constants that have previously been found to predict mechanical behaviour of actin and intermediate filament networks. By merely tuning two effective stiffness parameters, the model predicts experimental results in cells with a partly depolymerised actin cytoskeleton as well as in untreated control. This indicates that actin and intermediate filament networks are instrumental in providing elastic stiffness in response to applied forces, as well as governing the relaxation behaviour over shorter and longer time-scales, respectively.

Place, publisher, year, edition, pages
2016. Vol. 59, 168-184 p.
National Category
Other Medical Engineering
Research subject
Technology (byts ev till Engineering), Mechanical Engineering
Identifiers
URN: urn:nbn:se:lnu:diva-58922DOI: 10.1016/j.jmbbm.2015.11.039OAI: oai:DiVA.org:lnu-58922DiVA: diva2:1055020
Available from: 2016-12-09 Created: 2016-12-09 Last updated: 2016-12-16Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Kroon, Martin
In the same journal
Journal of The Mechanical Behavior of Biomedical Materials
Other Medical Engineering

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 27 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf